
PyData/Sparse

Completion of Python bindings for the TACO compiler

Personal details
Name: Sayandip Halder
Institute: Jadavpur University
Country of residence: India
Email: sayandiph4@gmail.com
Github: sayandip18

About me
I am pursuing a Bachelor of Engineering degree at Jadavpur University, Kolkata.
I have been coding in Python for a couple of years now. Sublime Text 3 as my
primary editor on my Ubuntu 20.04.1 system. In GSoC 2020, I had thought of
applying for the organisation Uarray, but it proved to be a daunting task to me
who was a beginner in the world of open-source development then. However, I
have made some contributions to Sympy and LiberTEM throughout the next one
year and I am confident about taking on large codebases now. I will be free for
the entire time period of GSoC 2021 and I can easily afford 40 hours a week.

The Project: an overview

TACO is a library for generating tensor algebra kernels. It generates efficient
code to handle both sparse and dense linear algebra and tensor algebra
computations.

mailto:sayandiph4@gmail.com
https://github.com/sayandip18

The traditional approach to handle these cases is to implement handwritten code
for kernels for every operation on sparse and dense tensors of different formats
and an infinite number of possible binary operations. Traditional libraries,
therefore, hand-code a few expressions, choose a few formats and then optimize
on those.

However, this approach is now unsuitable due to an abrupt increase in the
number of compound operations that must be developed.

TACO generates code entirely from tensor index notation and simple format
descriptors that fully specify the compressed data structures.

The image above describes how TACO works. The tensor expression and the
format is taken as input and a C code kernel that computes the expression is
received as output. Inside the compiler, the expression is represented as an
iteration graph from which the code is produced. Merge lattices are used to deal
with merging of operands.

Let us consider an example to understand how TACO works and explore the key
concepts in more detail. Consider the tensor kernel below.

Aij= Bijk * ck

𝑘
∑

Iteration graphs

If we want to compute this expression, we will need 3 loops for i,j and k. It can be
thought of as 3 dimensions in a polyhedron. Each expression can be thought of
as a sparse polyhedron in the following way

The generated code should skip over the holes, i.e. cells with the value zero. In
order to generate efficient code that does that, TACO generates a dependency
chain for each expression.

To perform the multiplication, we aim to merge the two polyhedrons and the
dependency chains, resulting in a clash as seen in the figure below.

So, in order to get the product, we do an AND operation. This gives us the
structure shown below.

Finally, the dependency on the result is added too.

This final iteration graph is used for code generation.

An iteration graph is therefore, a structure generated by TACO that describes
how to iterate over non-null values in the tensor expression. More formally, an
iteration graph is a directed graph G = (V, P) with a set of index variables V = {v1,
v2, …, vn} and a set of tensor paths P = {p1, ...,pm}. [Defined in
https://dl.acm.org/doi/10.1145/3133901]

Some examples of iteration graphs are shown below.

https://dl.acm.org/doi/10.1145/3133901

Code is generated from each level of the iteration graph. We can ignore all other
levels and concentrate on the level of our interest to generate code for that level.

The merge operation here is what is known as conjunctive merge. Conjunctive
merge is applied for multiplication operations whereas for addition, disjunctive
merge is applied.

Merge lattices

Let’s discuss conjunctive and disjunctive merges in more detail.

1. Conjunctive merge

Let’s take the expression denoting an element-wise multiplication of two𝑎
𝑖
= 𝑏

𝑖
𝑐

𝑖

sparse vectors.

Since they are sparse, the non zeros are removed.

Then, we take an intersection of and . This operation suggests that we iterate𝑏 𝑐
over both and until one of them runs out of value. The merge lattice is𝑏 𝑐
represented as

When we run out of value, we drop down to the bottom and our operation is
done.

2. Disjunctive merge

Let’s take the expression denoting element-wise addition.𝑎
𝑖
= 𝑏

𝑖
+ 𝑐

𝑖

We take the union of and here.𝑏 𝑐

is too expensive because of the additional loops, unlike the previous𝑏
𝑖

∨ 𝑐
𝑖

operation where we are done iterating once we run out of values in one of𝑏
𝑖

∧ 𝑐
𝑖

the vectors. So, the expression is rewritten as 𝑏
𝑖

∧ 𝑐
𝑖

∨ 𝑏
𝑖

∨ 𝑐
𝑖

We get a lattice like this

We iterate till one of the two vectors has a value left. Once one runs out of value,
we run through the rest of the other one.

3. Compound merge

Now that we have seen how the two basic operations work, let’s consider a few
Compound expressions.

The merge lattice for will be𝑎
𝑖

= (𝑏
𝑖

+ 𝑐
𝑖
) 𝑑

𝑖

For the lattice will be𝑎
𝑖

= 𝑏
𝑖

+ 𝑐
𝑖

+ 𝑑
𝑖

More formally, a merge lattice L is a lattice comprising n lattice points{L1,
...,Ln}and a meet operator. Each lattice point Lp has associated with it a set of
tensor dimensions Tp={tp1, ...,tpk} to be merged conjunctively (i.e.tp1∧...∧tpk)

and an expression exprp to be evaluated. The meet of two lattice points L1 and
L2 with associated tensor dimensions T1 and T2 respectively is a lattice point
with tensor dimensions T1∪T2. We say L1 ≤ L2 if and only if T1⊆T2, in other
words if L2 has tensor dimensions that are exhausted in L1 but not vice versa.
[Defined in https://dl.acm.org/doi/10.1145/3133901]

PYTACO

TACO has a Python library, called Pytaco, with the help of which the user can
access TACO objects with Python. Pytaco is essentially a Python wrapper
around TACO using pybind11. Pybind11 is a header-only library that provides
python bindings of C++ code. It exposes C++ types in Python and vice versa.
Pytaco is hosted here.

The following code is an example of how pybind11 can be used after installation

#include <pybind11/pybind11.h>

#include<iostream>

namespace py = pybind11;

int add(int i, int j) {

return i + j;

}

PYBIND11_MODULE(example, m) {

m.def("add", &add, "A function which adds two numbers");

}

The PYBIND11_MODULE() macro creates a function that will be called when an
import statement is issued from within Python. The module name (here,
“example”) is given as the first macro argument. The second argument (m)
defines a variable of type py::module_ which is the main interface for creating

https://dl.acm.org/doi/10.1145/3133901
https://github.com/tensor-compiler/taco/tree/master/python_bindings

bindings. The method module_::def() generates binding code that exposes the
add() function to Python.

The tensor() class defined in this file can be used to initialise tensors.

For example, the code below initialises a tensor of dimension 512 x 64 x 2048.

import pytaco as pt

from pytaco import dense, compressed

Declare a new tensor of double-precision floats with

dimensions

512 x 64 x 2048, stored as a dense-sparse-sparse tensor

A = pt.tensor([512, 64, 2048], pt.format([dense, compressed,

compressed]), pt.float64)

Tensor formats can be initialised in the following way

dm = pt.format([dense, dense])

(Row-major) dense matrix format

csr = pt.format([dense, compressed])

Compressed sparse row matrix format

csc = pt.format([dense, compressed], [1, 0])

Compressed sparse column matrix format

dcsr = pt.format([compressed, compressed], [1, 0])

Doubly compressed sparse column matrix format

csf = pt.format([compressed, compressed, compressed])

Compressed sparse fiber tensor format

Tensors can also be initialized from either NumPy arrays or SciPy sparse (CSR
or CSC) matrices too.

https://github.com/tensor-compiler/taco/blob/master/python_bindings/pytaco/pytensor/taco_tensor.py

sparse_matrix = scipy.sparse.load_npz('sparse_matrix.npz')

taco_tensor = pt.from_sp_csr(sparse_matrix)

np_array = np.load('arr.npy')

dense_tensor = pt.from_array(np_array)

The Python wrapper is not fully complete yet and needs to have some additional
features. Pytaco needs to have a numpy ndarray compatible API.
In the code below, a dense tensor is initialised from a numpy ndarray. We can
apply ufuncs to it.

>>> import numpy as np; import pytaco as pt

>>> t=np.array([1,2,3])

>>> type(t)

<class 'numpy.ndarray'>

>>> A = pt.from_array(t)

>>> A

A152 (3) ({dense}; 0):

dense (0):

[3]

[1, 2, 3]

>>> np.exp(A)

array([2.71828183, 7.3890561 , 20.08553692])

However, for a sparse tensor, ufunc cannot be applied.

>>> A = pt.tensor([2,2,2], compressed)

>>> A

A5 (2x2x2) ({compressed},{compressed},{compressed}; 0,1,2):

compressed (0):

[0, 0]

[]

compressed (1):

[0]

[]

compressed (2):

[0]

[]

[]

>>> A.insert([0, 1, 0], 42.0)

>>> A.pack()

>>> np.exp(A)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File

"/home/sayandip/taco/build/lib/pytaco/pytensor/taco_tensor.py",

line 384, in __array__

raise ValueError("Cannot export a compressed tensor. Make

sure all dimensions are dense "

ValueError: Cannot export a compressed tensor. Make sure all

dimensions are dense using to_dense() before attempting this

conversion.

The plan is to apply ufuncs directly to pytaco tensors without densifying, since
densifying messes up the memory and time benefits of sparse arrays. The
ufuncs we intend to make applicable are np.sum, np.add, np.subtract, np.multiply
and np.exp.

The Plan

● Part 1: Modify pytaco.tensor so that universal functions can be applied
to it directly.

● Part 2: Seeing which tests fail from the test suite of the tensora repository.
Making sure that most tests pass. Adding more tests to pytaco. There
should be a separate tests folder.

● Part 3: Implementation of advanced indexing of pytaco.tensor objects.

The timeline

● Community bonding (May 17, 2021 - June 7, 2021): Interacting with team
TACO and exploring the codebase more. Planning out the details of the
project in a more specific way and possibly restructuring the plan if thought
necessary.

Phase 1:

● Week 1: Implement np.add to pytaco.tensor.
● Week 2: Implement np.subtract tp pytaco.tensor.
● Week 3: Implement np.sum and np.exp
● Week 4: Implement np.multiply.

Documentation and tests will be added too.

Phase 2:

● Week 5 and 6 will consist of seeing which tests pass and which ones fail
from the test suite of tensora repository. The test suite of pytaco should
improve. Instead of a single file, there should be a directory having
numerous files with each file having tests relevant to a certain feature.

Phase 3:

https://github.com/drhagen/tensora

● Week 7 and 8 will see implementation one or both of the following features
depending on time constraints

1. TACO does not support computations that have tensors as operand
and result, e.g. a[i] = a[i] * b[i]. A computation like this has to be
implemented using temporary variables. I intend to implement this
feature in pytaco.

2. TACO does not support using the same index variable to index into
multiple dimensions of the same tensor operand (e.g., A[i,i]). This
should be implemented too.

● Week 9-10: Buffer weeks.

Link to PRs merged:

● PR 448

● PR 450

Bibliography

This talk at Microsoft Research by Fredrik Kjolstad.

This presentation, which was used in the talk.

This and this paper authored by Fredrik Kjolstad, Shoaib Kamil, Stephen Chou,
David Lugato and Saman Amarasinghe.

The TACO documentation and the tutorial notebooks.

https://github.com/pydata/sparse/pull/448
https://github.com/pydata/sparse/pull/450
https://www.youtube.com/watch?v=yAtG64qV2nM&list=LL&index=3
http://groups.csail.mit.edu/commit/presentations/2017/tensor-compiler.pdf
http://tensor-compiler.org/kjolstad-ase17-tools.pdf
http://tensor-compiler.org/kjolstad-oopsla17-tensor-compiler.pdf
http://tensor-compiler.org/docs/index.html
https://github.com/tensor-compiler/taco-jupyter-notebooks

