
1. Introduction

Project Name: Implementing locality sensitive hashing to compare large scale, out of core

machine learning datasets

Organization: Python Software Foundation

Suborganization: Activeloop

2. Student Information

Name: Rahul Babu Shrestha

Time Zone: Nepal (GMT +5:45)

Github: https://github.com/rahulbshrestha

Twitter: https://twitter.com/rahulbshrestha

LinkedIn: https://www.linkedin.com/in/rahulbshrestha/

GSoC blog: Will be hosted in my personal webpage: https://rahulbshrestha.github.io/

3. Project Info

Proposal title:

Implementing locality sensitive hashing to compare large scale, out of core machine learning

text and image datasets

Problem Description:

Machine learning datasets are often continuously modified yet there is no efficient way to

determine if two datasets are the same. This challenge becomes problematic when the datasets

are large (20 GB+) and cannot be easily loaded into memory.

Problem Solution

This project intends to use Locality Sensitive Hashing (LSH) with the MapReduce paradigm to

compare large machine learning datasets.

LSH is an algorithm which hashes similar inputs into the same “buckets” with high probability.

LSH is different from conventional cryptographic hashing functions as it tries to ensure hash

collisions rather than avoid it. Input data is hashed and put into “buckets”. The more similar the

https://github.com/rahulbshrestha
https://twitter.com/rahulbshrestha
https://www.linkedin.com/in/rahulbshrestha/
https://rahulbshrestha.github.io/

objects are, higher the probability that they are in the same bucket. Hash collisions are helpful

as the goal is to reduce the number of comparisons required to find similar items and similar

datasets are highly likely to have similar hash values. LSH is used for solving probabilistic

dimension reduction of high dimensional spaces. For example, it is used in nearest neighbour

search on large scale data [2].

LSH helps find similar pairs in a large dataset in optimal time. The time complexity for brute

forcing i.e comparing every possible pair has a time complexity of N!/(2!(N-2)!) ~ N²/2

= O(N^2) . LSH improves this with a time complexity of O(N).

I intend to implement LSH with the MapReduce paradigm so large datasets can easily be hashed

and compared for similarities. LSH outperforms other traditional hashing algorithms, and the

MapReduce paradigm running on Apache Spark/Hadoop makes it scalable to large datasets. If

my project is complete, it will be useful for Hub to compare large image and text datasets for

duplicates.

Timeline and Deliverables

Before June 7

- Decide on using Apache Spark vs Hadoop for the distributed architecture. This will

depend upon the possibility of integration with my Python package. As of now, I am

leaning towards Hadoop because of a paper I read that already implemented something

similar [2].

- Get comfortable with the concept of MapReduce paradigm on Spark/ Hadoop and

Locality Sensitive Hashing.

- Familiarize myself with the Hub community, coding practices, documentation, testing

system.

- Setup environment and collect sample image and text datasets.

Week 1 (June 7 - June 13)

- Create skeleton for Python package.

- Implement operations to collect and split data from datasets.

- Write code to vectorize datasets.

- This can be done by enumerating its “k-shingles”. K-shingles are k-consecutive characters

occurring in the dataset. Groups of 5-7 characters are made into shingles and put in a big

set.

Week 2 (June 14 - June 20)

- Implement minhash algorithm, which is used to calculate the probability of hash

collisions.

- The probability of collision in LSH using minhash is the same as the Jaccard Similarity

metric [3]. Jaccard Similarity is used to compare the similarity between any two set

- Milestone: A Python package which can split a text dataset into shingles and apply the

minhash algorithm

Week 3 (June 21 - June 27)

- Start working on a distributed system architecture based on this research paper [2]

which uses the MapReduce paradigm with Hadoop.

- Integrate my existing Python code with this distributed system architecture, so a basic

implementation of dividing a large dataset into shingles and applying the minhash

algorithm is possible.

Week 4 (June 28 - July 4)

- At this point, I will have decided if I want to go forward with Hadoop or Apache Spark.

- Implement “candidate generation” phase, where pairs of objects that are very likely

similar are selected for comparison.

- The MinHash algorithm is adapted to the MapReduce paradigm in Hadoop/Spark. To

implement MinHash on Hadoop, the library Likelike is available.

Fig: Candidate generation phase [2]

Week 5 (July 5 - July 11)

- Implement “candidate verification” phase, where the similarity of all pairs of objects

received from a single bucket is verified. This will be done by calculating the similarity of

two documents based on the Jaccard similarity coefficient [3].

- Milestone: A Python package with Spark/Hadoop using MapReduce that can apply

Locality Sensitive Hashing to a large text dataset. This package should be able to state if

both datasets are similar or not.

Fig: Candidate verification phase [2]

Week 6 (July 12 - July 18)

- I intend to start off this project by working primarily with text datasets as those are

easier to work with. At this point, I will move to image datasets. This shouldn’t be too

different as the only step that will be different is during the first part when the image is

split into shingles. The architecture and the algorithms (Min hash, Jaccard similarity)

used will be the same.

Week 7 (July 19 - July 25)

- By this point, I hope to have a distributed system architecture with LSH working on

comparing datasets. I intend to use test datasets to test the accuracy of my algorithm.

Adjusting the parameters used in LSH changes its accuracy and speed. I would like to

better understand the optimal conditions by testing with several datasets.

- This will also be a great time to fix any remaining issues with the distributed system

architecture.

- Prepare test datasets (text and image) to test the efficacy of the program I’ve

implemented.

Week 8 (July 26 - August 1)

- Generate documentation and add robust test cases for my Python package. I will be

adding comments as I code, this step only formalizes the whole process by generating a

documentation.

Week 9 (August 2 - August 8) and Week 10 (August 9 - August 15)

- Final review. This period will be used to complete leftover tasks and polish

documentation and test cases. Integration/QA will also have been completed.

- Milestone: The final deliverable will be a Python package (with PySpark/Hadoop

dependency and MapReduce implemented) which can compare large text and image

datasets for similarities.

Future Improvements and Contributions

- I hope to continue working on this project even after the end of GSoC. I would like to

extend to other types of datasets (non image and text) and would like to analyze the

performance of altering the parameters of the hashing algorithm. This could also be an

interesting research topic to explore during my graduate studies.

4. Personal Information

I graduated in 2020 with a Bachelor’s degree in Computer Science from Jacobs University

Bremen. I will be starting as a Master’s student in Informatics at TU Munich from October 2021.

The programming language I am most comfortable with is C++ and Python. I’ve used Python for:

- Programming assignments in courses such as, “Machine Learning”, “Programming in

Python”, “Introduction to Deep Learning”

- Writing scripts for visualising information

(https://github.com/rahulbshrestha/thesis/tree/master/analyse)

- Other smaller scripts for processing text files and debugging logs.

Résumé

https://drive.google.com/file/d/1PCrTMArfPKzXyStY0MgX0URD28h8aZ4t/view?usp=sharing

Why did you choose Hub?

Hub is one of the few organizations working on machine learning infrastructure. Data is an

important (and underrated) part of machine learning. Working at Hub aligns with my personal

https://github.com/rahulbshrestha/thesis/tree/master/analyse
https://drive.google.com/file/d/1PCrTMArfPKzXyStY0MgX0URD28h8aZ4t/view?usp=sharing

career goals of working as an ML engineer. This experience would be invaluable for me when I

am dealing with similar machine learning infrastructure projects in the future.

This project perfectly aligns with my goals. I will be starting my Master's degree from October

onwards and I intend to specialize in machine learning and distributed systems. The project I’ve

picked is challenging, therefore, I’ve done quite a bit of research for this proposal. I didn’t want

to work on an easy project as I won’t learn much on a shallow learning curve. Working on this

project will help strengthen my skills on data engineering and distributed computing. I enjoyed

the research I had to do to work on this proposal. There aren’t lots of papers online explaining

ways to implement hashing techniques for large datasets so I asked a question on

r/MachineLearning. That led me down a rabbit hole of tons of hashing techniques. I finally

settle on Locality Sensitive Hashing as it seems to be the most promising of them all.

Overall, I am looking forward to working on this project which will definitely be a great learning

experience!

Are you part of an underrepresented group in STEM?

No.

Other commitments

No other commitments during this time period. I’m currently working as a data science intern

which started in March and ends in May. I will be starting graduate school from October

onwards so I will be free from June to September.

Code I’ve worked on

Some projects I’ve worked on that are on my Github:

https://github.com/rahulbshrestha/pointcloudbuilder (C++)

https://github.com/rahulbshrestha/email-service (Python)

https://github.com/rahulbshrestha/spi (C)

The work I’m most proud of is the research I did for my Bachelor’s thesis. Since the thesis was

done at the German Research Center for AI, the code is on a private repo. I’ve explained the

algorithm I used in my thesis. I’m allowed to demo the code so it is available upon request!

https://github.com/rahulbshrestha/pointcloudbuilder
https://github.com/rahulbshrestha/email-service
https://github.com/rahulbshrestha/spi

Python test scripts and files I used for my thesis: https://github.com/rahulbshrestha/thesis

Thesis: https://github.com/rahulbshrestha/thesis/blob/master/thesis.pdf

5. References

[1]

https://medium.com/kalibrr-research/locality-sensitive-hashing-lsh-a-scalable-solution-for-dedu

plicating-jobs-from-multiple-sources-dd23460432de#:~:text=Locality%20Sensitive%20Hashing%

20(LSH)%20%E2%80%94%20the%20scalable%20technique&text=The%20LSH%20method%20ca

n%20perform,an%20equivalent%20tf%2Didf%20transformation.

[2] Szmit, R. (2013). Locality Sensitive Hashing for Similarity Search Using MapReduce on Large

Scale Data. Lecture Notes in Computer Science, 171–178. doi:10.1007/978-3-642-38634-3_19

https://link.springer.com/chapter/10.1007/978-3-642-38634-3_19

[3] https://en.wikipedia.org/wiki/Jaccard_index

https://github.com/rahulbshrestha/thesis
https://github.com/rahulbshrestha/thesis/blob/master/thesis.pdf
https://medium.com/kalibrr-research/locality-sensitive-hashing-lsh-a-scalable-solution-for-deduplicating-jobs-from-multiple-sources-dd23460432de#:~:text=Locality%20Sensitive%20Hashing%20(LSH)%20%E2%80%94%20the%20scalable%20technique&text=The%20LSH%20method%20can%20perform,an%20equivalent%20tf%2Didf%20transformation
https://medium.com/kalibrr-research/locality-sensitive-hashing-lsh-a-scalable-solution-for-deduplicating-jobs-from-multiple-sources-dd23460432de#:~:text=Locality%20Sensitive%20Hashing%20(LSH)%20%E2%80%94%20the%20scalable%20technique&text=The%20LSH%20method%20can%20perform,an%20equivalent%20tf%2Didf%20transformation
https://medium.com/kalibrr-research/locality-sensitive-hashing-lsh-a-scalable-solution-for-deduplicating-jobs-from-multiple-sources-dd23460432de#:~:text=Locality%20Sensitive%20Hashing%20(LSH)%20%E2%80%94%20the%20scalable%20technique&text=The%20LSH%20method%20can%20perform,an%20equivalent%20tf%2Didf%20transformation
https://medium.com/kalibrr-research/locality-sensitive-hashing-lsh-a-scalable-solution-for-deduplicating-jobs-from-multiple-sources-dd23460432de#:~:text=Locality%20Sensitive%20Hashing%20(LSH)%20%E2%80%94%20the%20scalable%20technique&text=The%20LSH%20method%20can%20perform,an%20equivalent%20tf%2Didf%20transformation
https://link.springer.com/chapter/10.1007/978-3-642-38634-3_19
https://en.wikipedia.org/wiki/Jaccard_index

