
1
 

 

Scraping​hub​ (Scrapy) : HTTP/2 Support 

About Me 

Contact Information 

Name  Aditya Kumar 

Country  India 

University  National Institute of Technology, Tiruchirappalli 

Course  Bachelor of Technology in Computer Science and Engineering 

Expected 
Grad. Date 

June 2021 

Timezone  IST (GMT +5:30) 

Email  k.aditya00@gmail.com 

Resume  Link to latest resume 

Github  github.com/adityaa30 

Code Contributions 

Issues 

👉 #4444 - Update redirect link from Python 2 docs to Python 3 docs 

Pull Requests 

👉 #4377 - [wip] option to output data in scrapy parse 
👉 #4390 - [docs] async/deferred signal handlers 
👉 #4406 - [fix] wrong reactor installed error 
👉 #4445 - [docs] update redirect links to python3 
👉 #4448 - [fix] zope interface 5.0.0 unsupported 

 

https://www.nitt.edu/
mailto:k.aditya00@gmail.com
https://adityaa30.github.io/
https://github.com/adityaa30
https://github.com/scrapy/scrapy/issues/4444
https://github.com/scrapy/scrapy/pull/4377
https://github.com/scrapy/scrapy/pull/4390
https://github.com/scrapy/scrapy/pull/4406
https://github.com/scrapy/scrapy/pull/4445
https://github.com/scrapy/scrapy/pull/4448


Scraping​hub​ (Scrapy) : HTTP/2 Support 2
 
 

Project Information 

Sub-org name 

Scrapinghub​ ​-​ ​Scrapy 

 

Proposal 

This project aims to implement HTTP/2 support adding an HTTP handler that can gracefully 
upgrade to HTTP/2 where possible, and take advantage of the compression and efficient gains. 
 
HTTP/2 will make Scrapy faster, simpler, and more robust — a rare combination — by allowing us 
to undo many of the HTTP/1.1 workarounds previously done within Scrapy and address these 
concerns within the transport layer itself. 
 
Disadvantages of using HTTP/1.x based client: 
👉 Need of multiple connections to achieve concurrency and reduce latency 
👉 No compression for request and response headers adding up unnecessary network traffic 
👉 No effective resource prioritization, resulting in poor use of the underlying TCP 

connection 
 
hyper-h2​ contains a pure-python implementation of a HTTP/2 protocol stack with a simple yet 
powerful API. We can use this as a building block for the complete HTTP/2 Client implementation.  
 
Benefits earned by implementing HTTP/2 client will be: 
👉 HTTP/2 introduces HPACK (​h2​ uses ​hpack​ internally) introducing compression of headers 

fields in request/response automatically enabling a more efficient use of network 
resources and a reduced perception of latency. 

👉 HTTP/2 being binary (rather than text as in HTTP/1.1) enables more efficient processing of 
messages (​via binary message framing​) 

👉 Multiple concurrent exchanges on the same connection (​multiplexing​) 
👉 Fewer TCP connections are used in comparison to HTTP/1.x i.e less competition with 

other flows and longer-lived connections, which in turn leads to a better utilization of 
available network capacity 

 

https://scrapinghub.com/
https://github.com/scrapy/scrapy
https://scrapinghub.com/
https://github.com/python-hyper/hyper-h2
https://pypi.org/project/h2/
https://pypi.org/project/hpack/


Scraping​hub​ (Scrapy) : HTTP/2 Support 3
 
 

👉 HTTP/2 have the same application semantics of HTTP and core concepts (eg. HTTP 
methods, status codes, URIs, header fields) allowing us to use Scrapy’s inbuilt ​Request​, 
Response​, etc without altering the current implementation 

👉 Eliminate unnecessary latency and HTTP/1.x workarounds, such as concatenated files, 
image sprites and domain sharding 

 
The two key upgrades that we will achieve with HTTP/2 will be 
👉 Single connection per resource​ - HTTP/2 uses one connection per resource, instead of one 

connection per file request. This means much less need for time-consuming connection 
setup, which is especially beneficial with TLS, because TLS connections are particularly 
time-consuming to create. 

👉 Faster TLS performance​ - HTTP/2 only needs one expensive TLS handshake, and 
multiplexing gets the most out of the single connection. As HTTP/2 will compress header 
data, and avoiding HTTP/1.1 optimizations such as file concatenation makes caching work 
more efficiently 

Implementation 

👉 As Hyper-h2 encodes the actions of the remote peer in the form of events. When we 
receive data from the remote peer and pass it into ​H2Connection​ object a list of objects 
will be returned, each one representing a single event that has occurred. Each event refers 
to a single action the remote peer has taken. As we will be tackling all the events in general, 
an interface will be introduced listing all the important methods: 
 
from zope.interface import Interface 
 
class IH2EventsHandler(Interface): 
📌 response_received(event: ​ResponseReceived​) 
📌 trailers_received(event: ​TrailersReceived​) 
📌 data_received(event: ​DataReceived​) 
📌 window_updated(event: ​WindowUpdated​) 
📌 stream_ended(event: ​StreamEnded​) 
📌 stream_reset(event: ​StreamReset​) 
📌 connection_terminated(event: ​ConnectionTerminated​) 

 
👉 Now, ​IH2EventsHandler​ will be implemented by ​H2ClientProtocol​. 

 
I am planning to have the implementation of this protocol to be inspired  by Twisted 
HTTP11ClientProtocol​.  
 
We can benefit from the ​binary framing layer​ in HTTP/2 protocol using only ​one 
long-lived TCP connection per server​ between our client and server. As ​binary framing 

 

https://docs.scrapy.org/en/latest/topics/request-response.html#request-objects
https://docs.scrapy.org/en/latest/topics/request-response.html#response-objects
https://python-hyper.org/projects/h2/en/stable/api.html#connection
https://python-hyper.org/projects/h2/en/stable/api.html#h2.events.ResponseReceived
https://python-hyper.org/projects/h2/en/stable/api.html#h2.events.TrailersReceived
https://python-hyper.org/projects/h2/en/stable/api.html#h2.events.DataReceived
https://python-hyper.org/projects/h2/en/stable/api.html#h2.events.WindowUpdated
https://python-hyper.org/projects/h2/en/stable/api.html#h2.events.StreamEnded
https://python-hyper.org/projects/h2/en/stable/api.html#h2.events.StreamReset
https://python-hyper.org/projects/h2/en/stable/api.html#h2.events.ConnectionTerminated
https://twistedmatrix.com/documents/current/api/twisted.web._newclient.HTTP11ClientProtocol.html


Scraping​hub​ (Scrapy) : HTTP/2 Support 4
 
 

layer​ enables full request and response multiplexing, by allowing the client and server to 
break down an HTTP message into independent frames, interleave them and reassemble 
them on the other end (refer below image) 

Image Source:​ ​Introduction to HTTP/2 | Web Fundamentals 
 

We will implement above above behaviour -  
📌 Terminology 
📍 Stream​: A bidirectional flow of bytes within an established connection, 

which may carry one or more messages. 
📍 Message​: A complete sequence of frames that map to a logical request or 

response message. It is a logical HTTP message, such as a request, or 
response, which consists of one or more frames. 

📍 Frame​: The smallest unit of communication in HTTP/2, each containing a 
frame header, which at a minimum identifies the stream to which the frame 
belongs. 

📌 Interleave multiple requests and incoming responses in parallel without blocking 
on any one using a single long-lived connection that can carry any number of 
bidirectional streams 

📌 Each stream has a unique identifier which will be used to carry bidirectional 
message 

📌 A ​dict​ will be maintained representing a pool of streams where 
📍 Key {​int​} -- Bidirectional stream unique identifier (​stream_id​) 
📍 Value {​Response​} -- Data delivered by a frame 

📌 With each ​request​ method call, a new entry in above defined dict will be added 
and updated at each time some data/response is received 

📌 When the the response for a request is received completely via a stream, the final 
response received will be passed using the ​Deferred​ returned by ​request 
method 

 
from twisted.internet.protocol import Protocol 
from zope.interface import implementer 
 

 

https://developers.google.com/web/fundamentals/performance/http2/
https://docs.scrapy.org/en/latest/topics/request-response.html#response-objects
https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html


Scraping​hub​ (Scrapy) : HTTP/2 Support 5
 
 

@implementer(IH2EventHandler) 
class H2ClientProtocol(Protocol): 
📌 __init__ (callback) 
📍 Parameters 

→ callback {​callable​} -- Callback to inform ​H2ConnectionPool 
about the status of handshake. Contains ​connection: 
H2ClientProtocol​ (​self​) instance as an argument which is 
either closed gracefully or kept back by the ​H2ConnectionPool 
similar to the implementation of pool in ​HTTPConnectionPool 

📍 Instantiated by ​H2ClientFactory  
📍 Creates an instance of ​H2Connection​ as ​self.conn 

📌 request (_request: ​Request​) 
📍 Parameters 

→ _request {​scrapy.http.Request​} -- object containing all the 
parameters of the network request to be issued 

📍 Return a ​Deferred​ that will fire with a ​scrapy.http.Response 
instance or an error  

📍 Issue ​_request​ over ​self.transport 
📌 connectionMade () 
📍 Method defined by ​BaseProtocol​ considered as the initializer of the 

protocol, because it is called when the connection to the server is 
established successfully 

📍 Calls ​self.conn.​initiate_connection​ (if connection is not initiated 
already) to ensure that the appropriate preamble data is placed in the data 
buffer 

📌  ​dataReceived (data) 
📍 Method defined by class ​Protocol 
📍 Get the events received to ​self.conn​ and call ​handle_event 

📌 handle_event (events) 
📍  Parameter 

→ event {​list​} -- List of event object returned by ​H2Connection 
📍 This method will act as a bridge between the ​events​ received from the 

HTTP/2 data and the methods defined in ​IH2EventsHandler  
📌 <methods of ​IH2EventsHandler​>  
📌 connectionLost (reason) 
📍 Method defined by class ​Protocol 
📍 Called by Twisted when the connection is gone i.e the underlying 

self.transport​ went away.  
 
 

👉 We will use ​Hyper-h2​’s​ ​H2Connection​ to represent the state of a single HTTP/2 
connection. As per ​Hyper-h2 docs​ ​H2Connection​ ​object will be the first thing you create 

 

https://twistedmatrix.com/documents/current/api/twisted.web.client.HTTPConnectionPool.html
https://python-hyper.org/projects/h2/en/stable/api.html#connection
https://docs.scrapy.org/en/latest/topics/request-response.html#request-objects
https://docs.scrapy.org/en/latest/topics/request-response.html#request-objects
https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html
https://docs.scrapy.org/en/latest/topics/request-response.html#response-objects
https://twistedmatrix.com/documents/current/api/twisted.internet.protocol.BaseProtocol.html
https://twistedmatrix.com/documents/current/api/twisted.internet.protocol.Protocol.html
https://python-hyper.org/projects/h2/en/stable/api.html#connection
https://twistedmatrix.com/documents/current/api/twisted.internet.protocol.Protocol.html
https://python-hyper.org/projects/h2/en/stable/api.html#connection
https://python-hyper.org/projects/h2/en/stable/basic-usage.html#connections
https://python-hyper.org/projects/h2/en/stable/api.html#connection


Scraping​hub​ (Scrapy) : HTTP/2 Support 6
 
 

and the object that does most of the heavy lifting​. 
 
Now, we will introduce a class ​H2ConnectionPool​ having its structure similar to Twisted 
HTTPConnectionPool​.  The difference here will be that ​get_connection​ method will 
return a ​Deferred​ that will fire with our ​H2ClientProtocol​ which will be used to send 
a ​HTTP/2​ request. ​H2ClientProtocol​ will be provided  by ​H2ClientFactory 
mentioned below. 
 
H2ConnectionPool​ will: 
📌 Maintain a pool of persistent ​H2Connection​’s 
📌 The pool will be implemented using ​python dictionary​, where  
📍 Key -- argument provided in ​get_connection​. The key is created by the 

H2Agent​ to uniquely identify a connection 
📍 Value -- ​H2ClientProtocol​ instance 

📌 Limits the number of persistent connections 
📌 Connections will be stored using keys, which should be chosen such that any 

connections stored under a given key can be used interchangeably 
📌 Failed requests done using previously cached connections will be retried once if 

they use an idempotent method (e.g. GET), in case the HTTP server timed them out. 
 
class H2ConnectionPool: 
📌 __init__ (reactor, conn_limit=2) 
📍 Parameters 

→ reactor -- A reactor to add event to close connection 
→ conn_limit {​int​} -- The maximum number of cached persistent 

connections for a (host:port) destination (​2​ by default) 
📌 get_connection (key, endpoint) 
📍 Parameters 

→ key {​tuple​} -- unique key identifying connections that can be used 
interchangeably 

→ endpoint -- endpoint that can be used to open a new connection if 
no cached connection is available 

📍 Supplies a connection (either new or retrieved from cached connections) 
which will be used for multiple HTTP/2 requests based on the key. The 
connection will remain inside the pool. In case, ​conn_limit​ is reached and 
there is a requirement of a new connection, one of the connections will be 
terminated and replaced by a new connection to fulfill the requirement. 

📍 LRU algorithm will be used for connection termination in case of a tie 
mentioned above 

📍 Returns a ​Deferred​ which will fire with  ​H2ClientProtocol​ which will 
be used to send a single HTTP/2 request  

 

https://twistedmatrix.com/documents/current/api/twisted.web.client.HTTPConnectionPool.html
https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html
https://python-hyper.org/projects/h2/en/stable/api.html#connection
https://docs.python.org/3/tutorial/datastructures.html#dictionaries
https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html


Scraping​hub​ (Scrapy) : HTTP/2 Support 7
 
 

→ return endpoint.connect(​<Instance of 
H2ClientFactory​>​) 

📌 close_cached_connections () 
📍 Functionality similar to Twisted 

HTTPConnectionPool​.closeCachedConnections 
 

👉 As mentioned above, class ​H2ClientFactory​ will be required by ​H2ConnectionPool 
to provide the ​endpoint​ with a protocol instance while connecting to the server. 
 
class H2ClientFactory(​protocol.Factory​): 
📌 __init__ (callback, metadata) 
📍 Parameters 

→ callback {​callable​} -- Callback to know the status of the request is 
handled completely. Contains ​connection: 
H2ClientProtocol​ instance as an parameter which is either 
closed gracefully or kept back in the ​H2ConnectionPool 

→ metadata {​str​} -- Metadata about the low-level connection details, 
used to make the repr more useful 

📌 buildProtocol (addr) 
📍 Simply initializes an instance of ​H2ClientProtocol​ and return it  

 
👉 Since Twisted ​Agent​ supports only upto HTTP/1.1,  we need to create our own custom 

class ​H2Agent​. ​H2Agent​ will be responsible for - 
📌 Resolving the hostname into an IP address and connecting it on the respective port 
📌 Verifies that the ​url​ provided by the ​request​ is valid 
📌 Get ​uri​ from ​request.url​ and issue a request to the server indicated by the 

parsed ​uri​ with a connection from the ​pool: ​H2ConnectionPool​ and an 
endpoint​ using ​self.endpoint_factory  

📌 Sending multiple requests concurrently by multiplexing the request in different 
streams on the same ​long-lived TCP connection​ established between our client 
and server 

📌 Generates a key using the ​uri​ of the location of the server to request  
 
class H2Agent: 
📌 __init__ (_reactor, pool, context_factory, 

connect_timeout=None) 
📍 Parameters 

→ _reactor -- A reactor for the ​H2Agent​ to place outgoing 
connections (cannot be None) 

→ pool {​H2ConnectionPool​} 
→ context_factory {​IPolicyForHTTPS​} -- A factory for TLS contexts, 

to control the verification parameters of OpenSSL 

 

https://twistedmatrix.com/documents/current/api/twisted.web.client.HTTPConnectionPool.html
https://twistedmatrix.com/documents/current/api/twisted.internet.protocol.Factory.html#forProtocol
https://twistedmatrix.com/documents/current/api/twisted.web.client.Agent.html


Scraping​hub​ (Scrapy) : HTTP/2 Support 8
 
 

→ connect_timeout {​int​} -- The amount of time that ​H2Agent​ will 
wait for the peer to accept a connection 

📍 Here we will initialize a class variable ​self.endpoint_factory​ using 
class implementing ​IAgentEndpointFactory 
 

📌 request (_request: ​Request​) 
📍 Parameters 

→ _request {​scrapy.http.Request​} -- object containing all the 
parameters of the network request to be issued 

📍 Calls the ​request​ method of ​self.pool​ passing ​_request 
📍 Returns a ​Deferred​ that fires with ​scrapy.http.Response​ when the 

response has been received (regardless of the response status code) or with 
a ​Failure​ if there is any problem which prevents that response from being 
received (including problems that prevent the request from being sent) 

📌 get_key (uri: ​URI​) 
📍 Parameter 

→ uri {​bytes​} -- The location of the server to request. This should be 
an absolute URI. 

📍 Return a ​tuple(uri.scheme, uri.host, uri.port)​ which is used 
by ​H2ConnectionPool​ to uniquely identify a connection 
 

👉 A class ​H2DownloadHandler​ will be introduced ​similar to​ ​HTTP11DownloadHandler​. 
 
Here is a description of how ​H2DownloadHandler​ class will look like: 
 
class H2DownloadHandler: 
📌 __init__ (settings, crawler=None) 
📍 Parameters (Similar to ​HTTP11DownloadHandler​) 

→ settings - scrapy.settings.Settings object 
→ crawler - Optional 

📍 Similar to ​HTTP11DownloadHandler​, an instance of 
H2ConnectionPool​ will be created 

📌 from_crawler (crawler) # classmethod 
📍 Create ​H2DownloadHandler​ object using Scrapy ​Crawler​ instance 

📌 download_request (request, spider) 
📍 Parameters description & implementation similar to 

HTTP11DownloadHandler.download_request(request, 
spider)​ in Scrapy 

📍 However instead of instantiating ​ScrapyAgent​, ​H2Agent​ will be 
instantiated passing the ​request​ argument directly! 

 
 

 

https://twistedmatrix.com/documents/current/api/twisted.web.iweb.IAgentEndpointFactory.html
https://docs.scrapy.org/en/latest/topics/request-response.html#request-objects
https://docs.scrapy.org/en/latest/topics/request-response.html#request-objects
https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html
https://docs.scrapy.org/en/latest/topics/request-response.html#response-objects
https://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html
https://twistedmatrix.com/documents/current/api/twisted.web.client.URI.html
http://localhost:8000/topics/api.html?highlight=crawler#crawler-api


Scraping​hub​ (Scrapy) : HTTP/2 Support 9
 
 

 
Above implementation can be summarised by the graph below 
 

 
 

 



Scraping​hub​ (Scrapy) : HTTP/2 Support 10
 
 

Integration of H2 in Scrapy 

 

 
Integration of H2 in Scrapy will primarily focus on ​H2DownloadHandler​ and 
HTTP11DownloadHandler​. As both of these API have their own respective protocols, we 
require an architecture which can  
👉 Decide a suitable handler for a particular request automatically 
👉 Clean and simple to understand 
👉 Minimal changes to the existing codebase required 

 
In the image provided, the architecture is proposed which introduces following three new classes 
👉 class HTTPDownloadHandler: 

📌 __init__ (settings, crawler=None) 
📍 Parameters 

→ settings {​Settings​} 
→ crawler {​Crawler​} 

📍 Instantiates both download handlers 
📌 from_crawler (crawler) # classmethod 
📍 Create ​HTTPDownloadHandler​ object using Scrapy ​Crawler​ instance 

📌 update_protocol (request, protocol) 
📍 This function acts as a callback and when called with the information about 

the negotiated callback, it will update the respective HTTP handler  by 
adding the ​protocol​ instance in the connection pool 

📍 After this the ​request​ is sent using the respective handler 

 

https://docs.scrapy.org/en/latest/topics/settings.html#settings
http://localhost:8000/topics/api.html?highlight=crawler#crawler-api
http://localhost:8000/topics/api.html?highlight=crawler#crawler-api


Scraping​hub​ (Scrapy) : HTTP/2 Support 11
 
 

📌 check_conn_exist (request: ​Request​) 
📍 Using the pools in both of the download handlers, it checks if a persistent 

connection to the request ​uri​ already exists. If it does exist, then it returns 
that pool’s instance or ​None​. 

📌 download_request (request, spider) 
📍 Calls ​self.check_conn_exist​ to verify if a new connection is required 

or a connection can directly be used from the pools 
📍 Based on the above result 

→ If a connection already persists then we can pass the parameters to 
the respective handler and handle the request 

→ Else initiate a connection for the respective resource by passing the 
setting ​ACCEPTED_PROTOCOLS​ (mentioned below). This function 
wraps the ​update_protocol​ method in a callback such that 
negotiated protocol can be notified 
 

👉 class NegotiateProtocolFactory(​protocol.Factory​): 
📌 __init__ (callback, metadata) 
📍 Parameters 

→ callback {​callable​} -- Callback to inform 
HTTPDownloadHandler​ about the protocol which was 
negotiated via Twisted. It is passed down to ​NegotiateProtocol 
as shown in the above image. 

→ metadata {​str​} -- Metadata about the low-level connection details, 
used to make the repr more useful 

📌 buildProtocol () 
📍 Simply initializes an instance of ​NegotiateProtocol​ and return it  

 
👉 class NegotiateProtocol(​protocol.Protocol​): 

📌 __init__(callback) 
📍 Parameters 

→ callback {​callable​} -- Callback to inform 
HTTPDownloadHandler​ about the protocol which was 
negotiated via Twisted 

📌 connectionMade () 
📍 Based on the protocol negotiated during the handshake 

(​self.transport.negotiatedProtocol​) we can use the callback 
now to pass this information to ​HTTPDownloadHandler  

📍 Updated the underlying protocol 
(​self.transport.wrappedProtocol​) based on the negotiated 
protocol 

 

https://docs.scrapy.org/en/latest/topics/request-response.html#request-objects
https://twistedmatrix.com/documents/current/api/twisted.internet.protocol.Factory.html#forProtocol
https://twistedmatrix.com/documents/current/api/twisted.internet.protocol.Protocol.html


Scraping​hub​ (Scrapy) : HTTP/2 Support 12
 
 

Setting Attributes 

A new ​Settings​ attribute shall be introduced  
👉 ACCEPTED_PROTOCOLS 

📌 Will be passed as a parameter to the ​optionsForClientTLS()​ function by 
Scrapy’s ​̀BrowserLikeContextFactory` 

📌 Type -- ​list<bytes>​ or ​bytes​ (Can be ​None​) 
📌 Default value can be -- ​[b'h2', b'http/1.1', b'http/1.0'] 
📌 List of protocols that the peer is willing to speak after the TLS negotiation has 

completed, advertised over both ALPN and NPN by default in Twisted. 
📌 If this setting is specified, and no overlap can be found with the other peer, the 

connection will fail to be established (default behaviour in Twisted). If the remote 
peer does not offer NPN or ALPN, the connection will be established with 
HTTP/1.x protocol if possible. 

📌 Protocols earlier in the list will be preferred over those later in the list 
📌 This setting will be effective only when ​HTTPDownloadHandler​ is enabled as it 

will have the flexibility to support both HTTP/1.x and HTTP/2 protocols 
simultaneously. 

📌 However, if the setting ​DOWNLOAD_HANDLERS​ is modified then the above scheme 
will not be effective 
 

Regarding other setting attributes such as ​DOWNLOAD_HANDLERS​, 
DOWNLOADER_HTTPCLIENTFACTORY​, ​DOWNLOADER_CLIENTCONTEXTFACTORY​, 
DOWNLOADER_CLIENT_TLS_*​ will not require any major change. However, A small change may 
be introduced in the default classes in Scrapy to support ​ACCEPTED_PROTOCOLS 

Work Timeline 
Note: All dates below are for year 2020 

Community Bonding Period : 4th May - 31st May 

4th May - 6th May (~3 days) 

👉 Decide on schedule and mode of communication for weekly and emergency  meetings  
👉 Setup other logistic i.e GSoC blog 

7th May - 20th May (~2 weeks) 

👉 Discuss with mentors about any changes or improvement to be made in proposed 
architecture and draft a final design document 

 

https://docs.scrapy.org/en/latest/topics/settings.html#settings
https://twistedmatrix.com/documents/current/api/twisted.internet.ssl.optionsForClientTLS.html


Scraping​hub​ (Scrapy) : HTTP/2 Support 13
 
 

👉 Finalise proposed architecture, deadlines and milestones with mentors 
👉 Increase my proficiency in Scrapy and Twisted  
👉 Increase familiarity with community practises and processes 
👉 Familiarize myself more with the Scrapy codebase 

21st May - 27th May (~1 week) 

👉 Setup development environment 
👉 Start a discussion for the implementation of ​IH2EventsHandler​ in 

H2ClientProtocol 

Coding Phase 

Week 1 : 28th May - 7th June 

👉 Discuss with the mentors about the methods defined in ​IH2EventsHandler 
👉 This discussion will be solely to understand if there is anything left out of HTTP/2 that can 

be added 
👉 Finalize the methods & their expected behaviour for ​IH2EventsHandler​ interface 
👉 Add the code for ​IH2EventsHandler​ interface declaration with detailed docstring & 

documentation done for each method 

Week 2 & 3: 8th June - 21st June 

👉 Start writing code for ​H2ClientProtocol​. Since this will be a relatively more important 
part of this project, more time is scheduled for it. 

👉 Add docstring for methods defined in ​H2ClientProtocol​ as the methods are 
implemented 

👉 Discuss with mentors regarding the implementation done regularly (at least once in every 
2-3 days) 

👉 Look for further optimizations  
👉 Add unit tests for ​H2ClientProtocol 

Week 4 : 22nd June - 28th June 

👉 Add documentation for ​H2ClientProtocol​ and finish writing unit tests 
👉 This week is kept as a buffer week to complete any leftover (if any) work 

Week 5 : 29th June - 5th July 

👉 Start writing code for ​H2ConnectionPool​ and ​H2ClientFactory 
👉 Discuss about the possible ​connection termination​ algorithms in ​H2ConnectionPool​ with 

the mentors 

 



Scraping​hub​ (Scrapy) : HTTP/2 Support 14
 
 

👉 Implement the algorithm finalized in the discussion 
👉 Add docstring for methods and functions implemented  

Week 6 : 6th July - 12th July 

👉 Add unit tests for ​H2ConnectionPool​ and ​H2ClientFactory 
👉 Add documentation for both classes 

Week 7 : 13th July - 19th July 

👉 Start writing code for ​H2Agent 
👉 Discuss with mentors regarding the implementation of 

TunnelingTCP4ClientEndpoint​, ​TunnelingAgent​, ​ScrapyProxyAgent​ and 
ScrapyAgent​ as they are currently implented in Scrapy for HTTP/1.x subclassing Twisted 
Agent 

👉 The discussion will finalize the implementation of above agents for HTTP/2 
👉 Add docstring for methods and functions implemented 

Week 8 : 20th July - 26th July 

👉 Add unit tests for ​H2Agent 
👉 Add documentation for ​H2Agent 

Week 9 : 27th July - 2nd August 

👉 Integrate ​H2Agent​, ​H2ConnectionPool​ and ​H2Protocol​ together 
👉 Write integration tests to verify the combined functionality after integration 

Week 10 : 3rd August - 9th August 

👉 Start writing code for ​H2DownloadHandler 
👉 Discuss with mentors on integration of ​HTTP/2​ in Scrapy 
👉 The discussion will finalize the integration process of ​HTTP/2​ in Scrapy 
👉 Add docstring for methods and functions implemented 
👉 Add unit tests for ​H2DownloadHandler 

Week 11 : 10th August - 17th August 

👉 Add documentation for ​H2DownloadHandler  
👉 Complete integration of ​H2DownloadHandler​ in Scrapy 
👉 Start writing code for ​HTTPDownloadHandler​ , ​NegotiateProtocolFactory​, 

NegotiateProtocol 
👉 Integrate all the components in Scrapy 

 

https://twistedmatrix.com/documents/current/api/twisted.web.client.Agent.html


Scraping​hub​ (Scrapy) : HTTP/2 Support 15
 
 

👉 Add unit tests for ​HTTPDownloadHandler​ , ​NegotiateProtocolFactory​, 
NegotiateProtocol 

Week 12 : 18th August - 23rd August 

👉 Write integration tests to verify the combined functionality after integration 
👉 Perform black box testing and beta testing for the entire project  

Week 13 : 24th August - 31st August 

(Code Submission & Final Evaluations) 

👉 Complete any left over work  

Future Work 
HTTP/2 implementation doesn’t stop with GSoC’20. Once the initial base is established, I want to 
keep working along further development  and maintenance in my spare time. Some features I hope 
to work on after GSoC are as follows 
👉 Connection termination algorithm 

📌 Algorithm to decide which one of the connections will be terminated in a 
connection pool and replaced by a new connection to fulfill the requirement when 
the connection limit is reached. 

📌 Switch to a more optimized and better algorithm compared to LRU 
📌 Add support for multiple configurable algorithms 

👉 Server Push 
📌 Take advantage of server push at the client side efficiently 
📌 PushedStreamReceived​ event can be used to implement server push 

More About Me 
Hi, my name is Aditya Kumar and I am a student pursuing Bachelor of Technology in Computer 
Science and Engineering, currently in my junior year, from National Institute of Technology, 
Tiruchirappalli. I am an enthusiastic full-stack developer at my college’s premier coding club, 
Delta Force​. 
 
I like to work, travel, play games (both indoor & outdoor) and especially listen to music. I've 
developed a crazy interest in 'coding' in general. I enjoy competitive programming and software 
development, attending hackathons and working on projects that make life a little easier and 
hacking on random things . I have been involved in software development, computer vision & 
artificial Intelligence for the past 2 years and currently working on improving my skills, finding new 
ways of thinking & problem solving to stay on top of development.  

 

https://python-hyper.org/projects/h2/en/stable/api.html#h2.events.PushedStreamReceived
https://delta.nitt.edu/


Scraping​hub​ (Scrapy) : HTTP/2 Support 16
 
 

Other Commitments 
👉 I have only applied for Scrapy in GSoC 2020 
👉 I will be having semester examination, dates aren't fixed due to the pandemic. The 

examination period will be 15 days. I will lessen the workload during my exams by 3/4 of a 
regular.  

👉 I will inform my mentors about any change in schedule in a timely manner 

 
Thanks a lot 🙂 

 


