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Project Abstract
The goal of this project is to create a set of high-level data preprocessing APIs that allow Hub 
users to improve overall dataset quality with minimal parameters. A machine-learning 
algorithm may perform differently on datasets with different characteristics (e.g., it might 
perform better on a dataset with continuous attributes rather than with categorical attributes). 
Taking into account all the possible pre-processing strategies, there exists an extremely large 
number of options and non-experienced users become overwhelmed. A lot of research has 
been done for providing help and an overview of the different steps of data analysis. The 
focus, however, has usually been on the model training step, and data pre-processing has 
generally been overlooked. This problem can be addressed by an automated approach, 
leveraging ideas from multiple research papers.

Project Description
Data preprocessing is a multi-step process of transforming and encoding the raw data so that 
it may be easily parsed by the machine. Data preprocessing is so important that about 50-
80\% of the data scientist’s time is spent on data preparation tasks. The main criteria for a 
model to be accurate and precise in predictions is that the algorithm should be able to easily 
interpret the data's features. Typically, data are preprocessed before being fed into the model. 
It is almost always necessary to transform (e.g. scaling, binarizing, one-hot encoding, etc.) into 
a more suitable representation for the downstream model. Most kinds of ML models take only 
numeric data as input, so we must at least encode the non-numeric data. The majority of the 
real-world datasets are highly susceptible to missing, mislabeled, inconsistent, and noisy data. 
Applying machine learning algorithms on that data would not give quality results as they would 
fail to identify patterns effectively. Data processing is, therefore, important to improve the 
overall quality of the data pipeline. Based on initial discussions with the Hub community, I 
believe that automated dataset optimization can transform the way developers and data 
scientists prepare data for machine learning pipelines. 

Objectives

https://github.com/lowlypalace
https://www.linkedin.com/in/danielgareev/
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In an effort to improve the data preprocessing for non-experienced users and help the Hub 
community to build ready-to-production pipelines faster, I will work towards extending the 
functionality of Hub in the following ways (along with a few principles I have in mind):

Easy-to-use and Clear APIs. Simplicity in user-facing API has been a central component 
of many successful machine learning libraries, such as scikit-learn . To transform a 
dataset, a minimal number of parameters needs to be specified. This is especially 
valuable for non-experienced users. This is also important to alleviate the issue of the 
black-box in the machine learning area, where models are currently being used without 
much understanding of their internal behavior. I believe that developing APIs for various 
dataset transformations that are clear in the first place will make it easier for users to 
understand what’s happening under the hood. I will first work towards making basic 
transformation strategies available for numerical data, text and images. As an example, I 
will first work on developing transformations for numerical data (e.g., normalizing, scaling, 
one-hot encoding, etc.). Then I will make specific improvements for each area and extend 
the collection of available pre-processing strategies if necessary.

Automating Preprocessing for Raw Data. Preprocessing is usually written and 
performed separately, before building and training the model. We fit some transformers, 
transform the whole dataset(s) and train the model on the processed data. For a complex 
task, a single-step preprocessing would not be enough. Raw data initially collected can be 
very noisy, contain useless columns or splitted into different dataframes or tables sources. 
The first data processing is usually performed on an original raw dataset without 
considering any kind of model data eventually will be fed in. The dataset is cleaned and 
the following additional processing and the model are built considering only the cleaned 
data. The preprocessing step, on the contrary, should be considered closely tied with the 
downstream ML model and adapted to its particular "needs". However, even plugging in a 
raw dataset in a specific model might be an issue for non-experienced users. For 
example, a specific model might only accept RGB colorspace, but the user has given a 
number of images in grayscale. Given a specific model, it would be useful to be able to 
automatically apply preliminary transformations to raw data. If we have a raw dataset, 
transformations targeted on completeness of the dataset, consistency in features and 
absence of duplicates are more important than more advanced data transformations. 
While keeping this in mind, I will design and build the functionality (or a toolkit) to (1) 
automatically apply basic required preprocessing for a specific model on a raw dataset 
(e.g., resizing all of the images to the same resolution that the model requires) (2) find a 
set of optimal processing strategies for a dataset that has already passed some basic pre-
processing to further increase dataset quality (i.e., in terms of the increasing predictive 
performance for a specific scoring function of a model).

Experimenting and Researching Novel Automated Pre-processing Methods. There is 
no defined methodology to find the set of strategies that would improve the overall dataset 
quality for a downstream model. Automated pre-processing is still a novel area of 
research:  only a few open-source tools are available and only a few papers are 
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published. Therefore, I will spend significant time researching and experimenting with 
various approaches that are leveraged in the literature, such as meta-learning.

Methodology
From my quick preliminary research I found out that the approaches to finding a set of 
preprocessing parameters can be classified into four main categories:

1. Manual: select pre-processing parameters based on intuition/experience/guessing, train 
the model, and score on the validation data. 

2. Grid Search: set up a grid of pre-processing parameter values and for each combination, 
train a model and score on the validation data. 

3. Random search: set up a grid of pre-processing parameter values and select random 
combinations to train the model and score. 

4. Automated Search: use methods such as gradient descent, Bayesian Optimization, or 
evolutionary algorithms to conduct a guided search for the best parameters (i.e., 
continuously pick the most statistically promising parameters).

5. Automated Search via meta-learning: use meta-learning to predict the impact of 
transformations on the final performance of models on the corresponding datasets. This 
paper is a great example of this approach.

The difference between the last two approaches is that when using methods such as gradient 
descent or Bayesian Optimization, we have to continuously train and validate the model to be 
able to rank the impact of the transformations. On the contrary, the meta-learning approach 
attempts to predict the impact of the transformations without training the model on the 
validation set. With this approach, the ranking of the transformations according to their impact 
on the final result can be available without actually training the model. Meta-learning is a 
promising approach, but I think that it might be too challenging for me to implement this as 
meta-learning for pre-processing is not yet widely used and discussed only in a few research 
papers. As a starting point, I will use a more naive approach. I will first create a set of 
parameters for a specific data transformation (e.g., normalization for numerical data, 
augmentation for image data, etc.), apply the transformation and train the model with that 
dataset. I will repeat this over n  times and pick the parameters that yielded the best results. I 
will first implement a search of data transformation parameters via grid search and then further 
improve it by using more advanced methods such as Bayesian Optimization. I will also start 
with simple transformations (e.g., one-hot encoding for numerical data, cropping for image 
data, etc.) before working on more advanced ones. I will also use only a single model 
(e.g. Resnet18 ) as a baseline to develop a general pipeline first before adding support for more 
models.

From a technical standpoint, the majority of the development (e.g. data transformations) will 
be done with the tools already used by many for data pre-processing. Many of the new 
features I plan to implement, such as transformations for numerical data, can be accomplished 
by using existing pre-processing modules in popular machine learning libraries. For example, 

https://www.essi.upc.edu/~aabello/publications/16.MEDI.Besim.pdf
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a large number of the data preprocessing transformations for numerical data such as one-hot 
encoding, discretization, imputation and normalization are available in sklearn.preprocessing  
package. Pytorch’s torchvision.transforms  are also used as a part of the transformation 
pipeline that performs operations such as normalization and image augmentation. However, a 
couple of features cannot be implemented using only existing libraries: a general algorithm 
that can find the most optimal parameters for a specific data transformation. I will implement 
this algorithm by taking a look at  GridSearchCV  and  RandomizedSearchCV  classes taking a model, 
a search space, and a cross-validation configuration. The benefit of these classes is that the 
search procedure is performed automatically, requiring minimal configuration. I have an 
intuition that hyperparameter tuning of a machine learning model should be similar to 
hyperparameter tuning for a specific data transformation. Similarly, the scikit-optimize  library 
provides a similar interface for performing a Bayesian Optimization of model hyperparameters 
via the BayesSearchCV  class. 

Taking into account all the possible pre-processing strategies for each modality is extremely 
challenging. Identifying the correct preprocessing and augmentation steps for increasing 
model performance requires a firm understanding of the problem, data collected, and 
production environment. For an image dataset, changing the size of an image sounds trivial, 
but there are considerations to take into account. Many model architectures require square 
input images, but few devices capture perfectly square images. Altering an image to be a 
square calls for either stretching its dimensions to fit to be a square or keeping its aspect ratio 
constant and filling in newly created “dead space” with new pixels. Moreover, input images 
may be various sizes, and some may be smaller than the required input size. Therefore, 
preserving scale is not always required, filling in dead pixels with reflected image content is 
often preferred and downsampling large images to smaller images is often safest. Randomly 
mirroring an image forces the model to recognize that an object need not always be read from 
left to right or up to down. Flipping may be illogical for order-dependent contexts, like text 
recognition on an image. However, for the most real world objects, flipping is a strong way to 
improve performance. The pre-processing steps for images include many more steps 
including orientation, random rotations, random noise, random exposure and/or brightness. 
There is no right way or the order to preprocessing. Therefore, I will experiment with various 
data collection and model inference contexts to make the tool that can scale to a larger 
number of datasets.

Deliverables
A set of high-level APIs for data transformations. The set of specific pre-processing 
transformations will be refined later with the mentors.

Image data: Rotation, augmentation, cropping, mirroring, segmentation

Text data: TF-IDF, stemming, lemmatization

Numerical data: Normalization, scaling, one-hot encoding

https://scikit-learn.org/stable/modules/preprocessing.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://scikit-optimize.github.io/stable/modules/generated/skopt.BayesSearchCV.html
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A general algorithm that can find the most optimal parameters for a specific data 
transformation. This algorithm should be able to rank transformations according to the 
improvement of the final result of the model training.

Docs on how to use data transformation APIs for various data types.

Quick overview and comparison of similar open-source solutions such as 
https://github.com/albumentations-team/autoalbument and 
https://github.com/DeepVoltaire/AutoAugment.

API Overview
The following is a short description of the high-level API for this project. This is a high-level 
schema idea of how users would interact with the API rather than a complete API description.

ds.optimize(estimator, transform, search_spaces, strategy)  

ds.optimize()  takes a model, transformation type and a set of optional parameters for data 
transformation, evaluates it and returns a score for the data transformation with the 
parameters that maximize the training metrics (e.g. training loss/accuracy, confusion matrix, 
etc.).

Args

estimator  - Estimator baseline model (e.g., ‘Resnet18’ ). 

transform  - A specific data transformation that needs to be applied to the dataset 
(e.g. ‘augmentation’ )

search_spaces  - An optional parameter to provide a specific range of parameters for a specific 
data transformation type.

strategy  - An optional parameter to provide a strategy (i.e., optimization algorithm) to use 
when looking for the best set of parameters (e.g., ‘grid_search’ , ‘randomized_search’  or 
‘bayes_search’ )

Returns

results  - A dict with applied sets of parameters and their ranks

best_params  - A set of best parameters fetched

best_score  - Best score fetched 

The scikit-learn  offers useful methods for cross-validation, model selection, pipelining, and 
grid search abilities. I would like to use or adapt scikt-learn  simple methods that are available 
in the library such as cross-validation and grid search. 

I will use the existing hub.core.transform  module to implement different data-preprocessing 
strategies for various data types format as this module already supports high-level API for 
defining a pre-processing function that would be applied to a dataset.

Benefits to Community

https://github.com/albumentations-team/autoalbument
https://github.com/DeepVoltaire/AutoAugment
https://api-docs.activeloop.ai/core/transform/index.html
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First, Hub users who are just starting out with machine learning will be able to build data 
pipelines faster. They will be to shift their focus towards working with data (e.g. data 
visualization, feature engineering and data modelling), as opposed to completing basic data 
pre-processing (e.g. imputing missing values). Currently, it is a complex task to review all of 
the possible pre-processing transformations as there exists an extremely large number of 
options. Finding the most optimal set of these parameters that improves the prediction quality 
of the model is even more difficult.

Second, In multimodal machine learning, we aim to build models that can process and relate 
information from multiple modalities. Learning from multimodal sources offers the possibility of 
capturing relations between modalities. An example can be images that are usually associated 
with tags and text explanations. Multimodal representation is the task of representing data 
from multiple modalities in the form of a vector or tensor. Since data from multiple modalities 
often contain both complementary and redundant information. A first fundamental challenge is  
is learning how to represent and summarize multimodal data in a way that exploits the 
complementarity and redundancy of multiple modalities. The heterogeneity of multimodal data 
makes it challenging to construct such representations. However, high-quality representations 
that have similarity in the representation space are important for the performance of machine 
learning models. This project will be a first step towards tackling some of these challenges 
including dealing with different noise levels, missing data, and combining data from different 
modalities. 

Finally, the area of automated data pre-processing is not yet widely studied among the 
researchers and not often used in the implementation of data pipelines. The project will help 
both researchers and developers to better understand the state of the field and identify 
directions for future research. 

Development Timeline
The following is a timeline for this project.

Time Period Task

Proposal
Deadline (April
19th - May
20th)

Project Proposal Submission Deadline • Read Hub docs and study the code base.

Project
Announced to
Public (May
20th - June
13th)

Community Bonding • Get involved with the Hub community. • Establish feature
requirements with the mentors. • Get to know the mentors better.

Week 1 (June
13th - June
19th)

Coding Period Start • Create a generic structure and schema of ds.optimize  API.

https://www.notion.so/Proposal-Deadline-April-19th-May-20th-6a60a36171374dee804d43f91948b9c7
https://www.notion.so/Project-Announced-to-Public-May-20th-June-13th-2e784a4e66c2415a91157d0dd1dc32c6
https://www.notion.so/Week-1-June-13th-June-19th-0e24f727fc6d4b78b05c1bc2b290470d


Automated Dataset Tuning - Hub (Activeloop) Proposal 7

Time Period Task

Week 2 (June
20th - June
26th)

• Add support to create data transformations for numerical data.

Week 3 (June
27th - July 3rd)

• Add support to create data transformations for text data.

Week 4 (July
4th - July 10th)

• Add support to create data transformations for image data.

Week 5 & Week
6 (July 11th -
July 24th)

• Add support for a grid search to ds.optimize  for finding pre-processing parameters.
For each of the sets, train a model and score on the validation data.

Week 7 & Week
8 (July 25th-
August 7th)

• Implement scoring functions for each model • Add support for storing the results in
results  and best_score .

Week 9 (August
8th - August
14th)

• Add support for specific parameters for each data transformation (e.g. a set of
parameters that will be used in grid search for 'augmentation'  transform). • Add support
to provide search_spaces  • Fix various unpredictable cases specific to each data
transform.

Week 10
(August 15th -
August 21st)

• Add support to provide more estimator  models

Week 11
(August 22nd -
August 28th)

• Add support for a method such as Bayesian Optimization to improve the ds.optimize
to be able to continuously pick the most promising transform parameters

Week 12
(August 29th -
September 4th)

Final Submission • Write docs for the feature • Verify that the feature is operating as
expected and tidy up any loose ends. • Submit the final code with complete
documentation to the Git repository.

I would prefer a large project (350 hours) as I believe I can make the most impact if I 
familiarize myself well with the codebase and get better involved in the community. It is 
supposed that I will have no commitments during this summer except for my student job which 
takes about 10 hours per week. Therefore, I will be committing around 25-30 hours per week 
to the project until the end of the coding period. However, I'm definitely willing to make more 
efforts if the project is behind schedule. I should also be able to extend the coding period if 
needed.

Future Goals
If there is enough time, I would like to contribute it to some of the ideas I have about extending 
the feature:

When a user wants to preprocess a dataset, they select an algorithm to be used for the 
analysis and then the system automatically recommends transformations to be applied. 
This will probably be only possible by using the meta-learning approach.

https://www.notion.so/Week-2-June-20th-June-26th-e9b1d296ab3e47d0af3dc7c0d76517f9
https://www.notion.so/Week-3-June-27th-July-3rd-8d52b7f355e7457786b74e5c7772da94
https://www.notion.so/Week-4-July-4th-July-10th-8c6132048e064f929aa310c66054d501
https://www.notion.so/Week-5-Week-6-July-11th-July-24th-8e543e4a5590476686d316046cd574b0
https://www.notion.so/Week-7-Week-8-July-25th-August-7th-c384c8de33ab41d9b6d6217901d4492a
https://www.notion.so/Week-9-August-8th-August-14th-1e4c0a294eb0411196d30208f1a06262
https://www.notion.so/Week-10-August-15th-August-21st-4867eec02f3846a080b458293e250e08
https://www.notion.so/Week-11-August-22nd-August-28th-8cb3dc968cb54ab0866e92cf75648cd6
https://www.notion.so/Week-12-August-29th-September-4th-4f9e106bb8f24d4fa5d7e32604a5156c
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Users should be able to see what transformations have been applied to a dataset to 
improve the prediction metrics. Even though the APIs should be working with minimal 
parameters from an end-user, more experienced users should be able to get an overview 
of the specific details of the transformations.

Write a short research paper provided that the results of the project are significant or the 
approach that is implemented is novel. Although I expect that this won’t add value to Hub 
in terms of the source code, this can be a logical wrap-up for the project as I believe this 
project has a strong scientific component. This new taxonomy will also help researchers to 
better understand the state of the field and identify directions for future research.

About Myself 
I am a computer science student at the University of Luxembourg, graduated in July 2021. In 
terms of programming experience, I have programmed in Python for 4 years, and in 
JavaScript for 3 years. As a result, I have thorough experience with the languages and 
technologies used by the Hub community. I am also well-versed with machine learning and 
with existing ML libraries. I have used various data types (text, images, numerical data) for 
building ML pipelines. Therefore, I’m familiar with most of the pre-processing techniques used 
for various types of data. I’m also familiar with the concepts such as grid search, cross-
validation and autoML. For my computer science coursework, I have taken object-oriented 
design and data structures, analysis of algorithms, and discrete structures. I have also taken 
extensive machine learning and data science coursework.

While I have not contributed to other open-source projects, I have contributed to Git 
repositories for more than 2 years while working for various internships and student jobs. 
Additionally, I have also made a number of relevant projects on my own, which I have linked 
here with descriptions:

Creating a Music Video of a Song with StyleGAN2. I am in charge of the initial research, 
planning and managing the project, and designing an end-to-end data pipeline to create 
generative images and music videos for the machine learning exhibition at the University 
of Luxembourg. I built a data-collection pipeline in Python and implemented an algorithm 
for clustering images and deployed the Docker containers for training 15+ StyleGAN2 
(TensorFlow) models to High-Performance Computing at the University of Luxembourg. 

Depression Classification Using Machine Learning. I implemented a model that classifies 
whether a person is depressed based on the number of speech and non-speech-related 
features. Experimented with various machine learning models (KNN, SVM, Keras NN, 
Decision Tree, XGBoost, Naive Bayes). Visualized data using Seaborn and Matplotlib.

Airbnb Price Prediction using Machine Learning. I developed a machine learning model 
that uses a wide range of listing data points to predict optimal prices for rental. I 
experimented with linear and ridge regressions, gradient boosting framework, and grid 
search to improve the accuracy of the model. 

https://github.com/lowlypalace/StyleGAN2
https://github.com/lowlypalace/depression-classification
https://github.com/lowlypalace/airbnb
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Generating Music with Recurrent Neural Network (RNN). Used Recurrent Neural Network 
(RNN) to generate music using Tensorflow and open-source tools from the Magenta 
project. My responsibilities included collecting the MIDI datasets, modeling sequence data 
using the Long Short-Term Memory (LSTM) network, and developing a Javascript web 
application to interact with the model.

Automatic Spot of Security Fixes in Source Code Repositories. I mined data from 150+ 
open-source git repositories using Python scripts, designed the dataset and implemented 
an SVM machine learning classification model that automatically spots security-fix 
commits. Implemented data classification and visualization using Scikit-learn, Numpy, 
Pandas, and Matplotlib.

Predictive Maintenance of Aircraft with Machine Learning. I developed a machine learning 
algorithm with time series forecasting that helps engineers to decide the best moment to 
proceed with the maintenance of the aircraft. I experimented with various machine 
learning models and implemented anomaly detection algorithms with time-series 
forecasting. I implemented data preprocessing and data modeling using Pandas, NumPy, 
Statsmodels, Plotly and Matplotlib.

My resume (in the first section) provides more details about the projects, internships and 
technologies that I have worked with. 

I am excited and enthusiastic about working on this project and look forward to writing code 
that can be used by data scientists and developers far and wide!

https://github.com/lowlypalace/melody-me
https://github.com/lowlypalace/opensec
https://github.com/lowlypalace/ml-predictive-maintenance

