

Scrapy : Support for different robots.txt parsers
● Name: Anubhav Dinesh Patel

● Github: ​anubhavp28

● University: Indian Institute of Information Technology Kalyani

● Course: Bachelor of Technology in Computer Science and Engineering

● Timezone: IST (GMT +5:30)

Proposal

This project is about introducing a new interface for robots.txt parsers in scrapy, allowing users of
scrapy to substitute a new robots.txt parser if they do not want to use the inbuilt one.

Deliverables

At the end of this project, I hope to deliver:

● A new interface for scrapy to communicate with any robots.txt parser. Parsers will have to
implement this interface to allow integration with scrapy.

● A modified version of the existing inbuilt parser that works with the new interface.

● An implementation of this interface on top of existing 3rd party parsers - ​reppy​ and
Robotexclusionrulesparser​ (rerp)​.

● (Stretch Goal)​ A pure python robots.txt parser.

Implementation

The implementation language will be Python. The implementation of any class/method will
accompany tests and documentation for the same.

Details

1. Interface for robots.txt parsers

● A new setting​ ​ROBOTSTXT_PARSER ​ will be added which will point to the python import
path of a class implementing the new interface. This class will be used by scrapy to
communicate with the robots.txt parser.

http://github.com/anubhavp28/
https://github.com/seomoz/reppy
http://nikitathespider.com/python/rerp/

● An abstract class ​BaseRobotsTxtParser ​ will be introduced. This abstract class will
act as a guide to the interface spec. A user who wish to substitute a new parser will have
to extend this class and implement its methods.

Here is the description of how the ​BaseRobotsTxtParser ​ class will look like:

class ​ BaseRobotsTxtParser

● __init__(robotstxt_url, user_agent)

○ Parameters :

■ robotstxt_url : URL of robots.txt file
■ user_agent : user-agent to use while retrieving rules.

● parse(robotstxt_body=None)

Calls the robots.txt parser to parse the contents of robots.txt file.

○ Parameters :

■ robotstxt_body : ​(Optional) ​A string containing the contents of
robots.txt file. If None, ​robotstxt_url ​ will be used to fetch
robots.txt for parsing.

● allowed(url, user_agent=None)

Returns whether the given url is allowed or not.

○ Parameters :

■ url : url to check permission for
■ user_agent : ​(Optional) ​user-agent​ to use while checking​. ​If None,

user-agent​ ​given during the instantiation will be used.

● sitemaps()

Returns a list of links to the sitemaps on the website. Sitemaps directive is
not user-agent specific. If there is no sitemaps specified in ​robots.txt ​,
return ​None ​.

● crawl_delay(user_agent=None)

Returns the value of the ​Crawl-delay ​ parameter from ​robots.txt ​ for
the given ​user-agent​. If there is no such parameter or it doesn’t apply to

the ​user-agent​ specified or the ​robots.txt ​ entry for this parameter has
invalid syntax, return ​None ​.

○ Parameters :

■ user_agent: ​(Optional)​ ​user-agent​ to find ​Crawl-delay ​ for. If
None ​, ​user-agent​ specified during instantiation will be used.

● preferred_host()

Returns preferred domain specified with Host directive. If nothing is
specified, returns ​None ​.

Here is a sample implementation of this interface on top of python inbuilt robots.txt
parser ​urllib.robotparser ​:

class​ ​InbuiltRobotsTxtParser​(​BaseRobotsTxtParser​):

 ​def​ ​__init__​(​self​, robotstxt_url, user_agent):
 ​self​.robotstxt_url = robotstxt_url
 ​self​.user_agent = user_agent
 ​self​.rp = urllib.robotparser.RobotFileParser()
 ​self​.rp.set_url(robotstxt_url)

 ​def​ ​parse​(​self​, robotstxt_body=None):
 ​if​ robotstxt_body​:
 ​self​.rp.parse(robotstxt_body)
 ​else​:
 ​# fetch using url provided and parse

though, we shouldn’t use a synchronous fetch

 ​self​.rp.read()

 ​def​ ​allowed​(​self​, url, user_agent=None):
 user_agent = user_agent ​or​ ​self​.user_agent
 ​return​ ​self​.rp.can_fetch(user_agent, url)

 ​def​ ​sitemaps​(​self​):
 ​"""urllib.robotparser does not support sitemap directive"""
 ​return​ None

 ​def​ ​crawl_delay​(​self​, user_agent=None):
 user_agent = user_agent ​or​ ​self​.user_agent
 ​return​ ​self​.rp.crawl_delay(user_agent)

 ​def​ ​preferred_host​()
 ​"""urllib.robotparser does not support host directive"""
 ​return​ None

● Two new classes will be introduced - ​ReppyRobotsParser ​ and​ ​RerpRobotsParser
both implementing the new interface on top of ​ ​reppy​ and ​Robotexclusionrulesparser
(rerp)​ respectively. Thus, scrapy will have support for three different robots.txt parsers
out of the box.

● Modify ​RobotsTxtMiddleware ​ to use ​ROBOTSTXT_PARSER ​ to instantiate the parser
(similar to how ​HttpCacheMiddleware ​ uses ​HTTPCACHE_STORAGE ​ to instantiate
the cache storage backend)

● Modify ​RobotsTxtMiddleware ​ to use the new interface.

Discussion

● How to handle not fully compliant parsers
The user is free to substitute any parser. Hence, it can easily be the case that a
substituted parser may not support all of them. While implementing interface on
top such parsers, how should we handle the case of a parser not supporting a
certain directive. For example, Host directive may not be supported by all parsers
(​urllib.robotparser ​ does not support host directive) and the interface
specification I proposed recommends keeping a preferred_host() function, then
should calling preferred_host() raise some custom exception notifying that the
parser doesn't support it or should it just act like as if there is no preferred
domain is specified with host directive in robots.txt?

● Scrapy does not use crawl-delay value
Since this project will provide fully compliant robots.txt parser support to Scrapy.
Maybe, we can somehow use ​crawl-delay ​ value to automatically set Scrapy’s
DONWLOAD_DELAY ​ setting. Hence, making Scrapy respect ​crawl-delay ​ by
default?

● Should we leave the behaviour when the server response (while retrieving
robots.txt) is something other than success (HTTP 2XX status code) to the
parser to implement?
Different robots tend to behave differently, for example Yandex bot simply
assumes unlimited access if the server response is something other than
success. While google follow a complex set of rules described here -
https://developers.google.com/search/reference/robots_txt​.

https://github.com/seomoz/reppy
http://nikitathespider.com/python/rerp/
https://developers.google.com/search/reference/robots_txt

If we do decide to go with this, we can change the parser interface to accept
scrapy.http.Response ​ ​object. Maybe something like this:

 ​def​ ​__init__​(​self​, response, user_agent):
 self​.response = response

 ​self​.user_agent = user_agent
 ​self​.rp = urllib.robotparser.RobotFileParser()
 ​self​.rp.set_url(response.url)

def​ ​parse​(​self​):
 ​self​.rp.parse(self.response.body)

2. Pure Python robots.txt parser

Discussion

Conflicting specification exists for robots.txt, therefore a detailed discussion is necessary
before commencing implementation of our own parser. Below, I have listed a set of
topics that we can discuss during the community bonding period.

● Priority among Allow and Disallow rules
The allow directive is now widely supported by parsers and robots. The 1997
Internet Draft of robots.txt specification recommends that the first matching
robots.txt pattern should decide whether the URL is allowed or not. If no match is
found, the default assumption should be that the URL is allowed. The Python’s
in-built ​RobotFileParser ​ uses this approach.

Google's implementation differs in that Allow patterns with equal or more
characters in the directive path win over a matching Disallow pattern. The
reppy ​ parser uses this approach.

● Behaviour when the server response is something other than success (
HTTP 2XX status code)
I think, we should leave it to the parsers to implement behaviour when the server
response is something other than success (HTTP 2XX status code). This way
we get a cleaner interface, otherwise any middleware would first need to check
for original server response and then make a query with a call to ​allowed
function to check if the URL is okay for crawling.

Different robots tend to behave differently, for example Yandex bot simply
assumes unlimited access if the server response is something other than
success.

For our own parser, we can follow the 1997 Internet Draft of robots.txt
specification that recommends

● When the server response indicates that the resource doesn’t exist (

HTTP status code 404), assume that the access to the website is not
restricted.

● When server response indicating access restrictions (HTTP status

code 401 or 403), assume the access to the website is completely
restricted.

● When server response indicates redirection (HTTP status code 3XX),

follow the redirect until a resource can be found. Though it doesn’t
specify any upper bound on the redirects.

● Allow and Disallow directives without parameters

 Disallow:
 Allow:

Different robots and parsers, tend to interpret ​Disallow ​ and​ ​Allow ​ directives
different when they are without any parameters.

When ​Disallow ​ directive is without any parameter, Googlebot simply ignores
the directive. While Yandex and rerp, assume that unlimited access is provided
(nothing is disallowed).

When ​Allow ​ directive is without any parameter, Googlebot and Yandex simply
ignores the directive. While rerp, assume that nothing is allowed (access is
completely restricted).

● * and $ wildcards

A lot of robots support * and $ wildcards. ​reppy ​ supports theses wildcards.
● * matches any sequence of characters
● $ matches the end of the URL.

Example (disallow all files with .asp extension) :

User-agent: Googlebot
Disallow: /*.asp$

Google’s specifications also support * wildcard in user-agent (such ​ user-agent:
googlebot* ​)

● Support for other directives
Other directives such as ​Clear-param ​, ​Visit-time ​ and ​Request-rate ​,
can also be supported.

● Making our parser configurable
Since, conflicting specifications exist, the results can vary considerably when
using a different specification. Maybe, we can introduce settings that will allow
the user to control the behaviour of our parser.

Implementation

● I have provided pseudo-code for a robots.txt parser. While writing this
pseudocode I have taken liberty and have skipped certain details, that I would
definitely keep in mind while writing the code during GSoC. I have below a
non-exhaustive list of such details that I have skipped while writing the
pseudo-code.

> Specifications recommend a case insensitive substring match without
version information for comparing user-agents. I have went with direct
string comparison in the pseudocode.

> For comparing urls, I have used simple prefix match in pseudocode -
no support for wildcards.

class RobotsParserPython:

Instance Variables

● rules: A dictionary mapping user-agents to a dictionary
containing the rules for them.

● currentDirective: current directive

● userAgentBuffer: list of user-agent current record is for

Methods

function parse(robotstxt_content):

lines = robotstxt_content.split('\n')

 for line in lines:

1. Remove the comment part of the line (ie, part of the
line starting from `#`)

2. Split line using `:` as delimiter

3. If split produces does not produce exactly 2 strings,
stop processing this line further and move to the next
line. This could be a line that only contain comment.

4. Label the 2 strings produced as field and value.

5. field = tolower(field) # Since the field name is case
insensitive, convert field to lowercase.

6. value = trim(value)

7. If field name is not among the known directives, stop
processing this line further and move to the next
line. Robots.txt specification allows for lines with
fields not explicitly specified by the specification,
for future extension of the format.

8. call _handleDirective with field name and value

function _handleDirectives(field, value):

1. previousDirective = self.currentDirective

2. self.currentDirective = field

3. switch (field) :

a. case “user-agent”:

■ If previousDirective != “user-agent”:

● # beginning of a new record

● self.userAgentBuffer = [] # empty list

■ # multiple user-agents can correspond to this
record. Store all of them in userAgentBuffer.

■ userAgent = tolower(value)

■ self.userAgentBuffer.append(userAgent)

■ self.rules[userAgent] = {} # new dict

b. case “disallow”:

■ foreach userAgent in self.userAgentBuffer:

● self.rules[userAgent][‘disallow’].append(v
alue)

c. case “crawl-delay”:

■ foreach userAgent in self.userAgentBuffer:

● self.rules[userAgent][‘crawl-delay’] =
value

d. case “sitemap”:

■ # sitemap directive is not user-agent specific

■ self.rules[‘*’][‘sitemap’].append(value)

e. case “host”:

■ # host directive is not user-agent specific

■ self.rules[‘*’][‘host’] = value

f. default:

■ foreach userAgent in self.userAgentBuffer:

● self.rules[userAgent][field].append(value)

Apply length rule (similar to reppy and Google’s implementation)
to order allow & disallow directives for a user-agent

function orderDirectives(rules):

1. orderedDirectives = []

2. allowRules = rules[‘allow’]

3. disallowRules = rules[‘disallow’]

4. directives = []

5. foreach rule in allowRules:

a. directives.append({“directive”: “allow”, “rule”:rule})

6. foreach rule in disallowRules:

a. directive.append({“directive”:”disallow”,
“rule”:rule})

7. sort(directives, in descending order based on string length
of rule part)

8. return directives

function isAllowed(url, userAgent):

1. #convert ​https://www.example.com/test/me​ to /test/me

2. url = getRelativeURL(url) # easy to implement hence,
pseudocode not given.

3. orderedDirectives = orderDirectives(self.rules[userAgent]) #
sort rules based on length rule

4. if no rules found for userAgent: #orderedDirectives is empty

a. orderedDirectives = orderDirectives(self.rules[‘*’])

5. allowed = True

6. foreach directive in orderedDirectives:

● If (url.beginsWith(directives[‘rule’]):

○ if (directive[‘directive’]==’allow’)

■ break

○ else:

■ allowed=False

■ break

7. return allowed

function getSitemaps():

1. return self.rules[‘*’][‘sitemap’]

https://www.example.com/test/me

● For implementing support for * and $ wildcards, we can use regular expression.
We can escape metacharacters apart from * and $, and replace * with .* to give it
the correct meaning (with respect to robots.txt spec). With limited testing that I
have done, it seems to produce the correct result.

def parser_match(pattern, url):
 s = re.split(r'([$*])', pattern)
 for index, substr in enumerate(s):
 if substr not in ['*', '$']:
 s[index] = re.escape(substr)
 else:
 s[index] = s[index].replace('*', '.*')
 pattern = ''.join(s)
 if re.findall(pattern, url):
 return True
 return False

>>> parser_match(r'/test/*.php$', '/test/me.pph')
False
>>> parser_match(r'/test/*.php$', '/test/me.phpp')
False
>>> parser_match(r'/test/*.php$', '/test/me.php')
True
>>> parser_match(r'/test/*.php$', '/test/')
False

Code Contribution

Pull requests

● https://github.com/scrapy/scrapy/pull/3660
● https://github.com/scrapy/scrapy/pull/3689
● https://github.com/scrapy/scrapy/pull/3692
● https://github.com/scrapy/scrapy/pull/3738
● https://github.com/scrapy/scrapy/pull/3662
● https://github.com/scrapy/scrapy/pull/3735
● https://github.com/scrapy/scrapy/pull/3737

https://github.com/scrapy/scrapy/pull/3660
https://github.com/scrapy/scrapy/pull/3689
https://github.com/scrapy/scrapy/pull/3692
https://github.com/scrapy/scrapy/pull/3738
https://github.com/scrapy/scrapy/pull/3662
https://github.com/scrapy/scrapy/pull/3735
https://github.com/scrapy/scrapy/pull/3737

Issues

● https://github.com/scrapy/scrapy/issues/3683
● https://github.com/scrapy/scrapy/issues/3664
● https://github.com/scrapy/scrapy/issues/3661
● https://github.com/scrapy/scrapy/issues/3736
● https://github.com/scrapy/scrapy/issues/3734

Timeline

Community Bonding Period : May 6, 2019 - May 26, 2019

● Setup development environment.
● Actively participate in regular meetings.
● Finalise interface for robots.txt parsers.
● Commence discussion on topics listed in the proposal above.
● Finalise deadlines and milestones.
● Increase familiarity with community practices and processes.
● Contribute bug fixes/patches.
● Setup blog for GSoC.

Week 1 : May 27, 2019 - June 2, 2019

● Finalise interface for robots.txt parser.
● Implement abstract class ​BaseRobotsTxtParser
● Implement the new interface on top of Python’s inbuilt ​urllib.robotparser

Week 2 : June 3, 2019 - June 9, 2019

● Modify ​RobotsTxtMiddleware ​ class to use the new interface rather than directly

calling ​RobotFileParser
● Document the new interface and ​ROBOTSTXT_PARSER ​ setting.
● Write tests.

Week 3 : June 10, 2019 - June 16, 2019

● Document the new interface and write tests.
● Implement the new interface on top of ​reppy ​.

Week 4 : June 17, 2019 - June 23, 2019

https://github.com/scrapy/scrapy/issues/3683
https://github.com/scrapy/scrapy/issues/3664
https://github.com/scrapy/scrapy/issues/3661
https://github.com/scrapy/scrapy/issues/3736
https://github.com/scrapy/scrapy/issues/3734

● Document the new interface and write tests.
● Implement the new interface on top of ​rerp ​.

Week 5 : June 24, 2019 - June 30, 2019

● < Buffer Week > Complete leftover work and discussion with mentors.
● Discussion about implementation of a pure python robots.txt parser.

Week 6 : June 18, 2019 - June 25, 2019

● Discussion about implementation of a pure python robots.txt parser.
● Implement basic functionality related to parsing a robots.txt file.
● Write documentation and tests.

Week 7 : July 1, 2019 - July 7, 2019

● Implement basic functionality related to parsing a robots.txt file.
● Implement ability to check whether a URL is allowed to crawl or not.
● Write documentation and tests.

Week 8 : July 8, 2019 - July 14, 2019

● Implement ability to check whether a URL is allowed to crawl or not.
● Implement ability to retrieve a list of sitemap, the preferred host and crawl-delay.
● Write documentation and tests.

Week 9 : July 15, 2019 - July 21, 2019

● Implement support for * and $ wildcards in the new parser.
● Write documentation and tests.

Week 10 : July 28, 2019 - Aug 4, 2019

● Write documentation and tests.
● Discuss with mentors how the parser can be extended further.

Week 11 : Aug 5, 2019 - Aug 11, 2019

● Discuss with mentors how the parser can be extended further. Maybe, Implement

support for uncommon directives.

Week 12 : Aug 12, 2019 - Aug 18, 2019

● < Buffer Week > Complete leftover work and discussion with mentors.

Final Project Submission Week: Aug 19, 2019 - Aug 26, 2019

● Wrap up, complete leftover work and final report.

Other Commitments

● I have only applied to Scrapy in GSoC 2019.
● I will have my semester ending examination in May. I don’t have exact dates yet, though

it is likely to be starting from May 10. The examination period will be of 5 days. It won’t
impact my productivity a lot.

