
DFFML : Implementing Distributed Orchestrator And
Adding DataFlow Tutorials

Organization: Python Software Foundation

About Me

Name : ​Aghin Shah Alin K
University​ :

Name:​Indian Institute Of Technology,Madras
Program : ​Dual Degree(B.Tech + M.Tech)Computer Science And Engineering
Year : ​3rd
Expected Graduation:​2022

Contact:
Email​ : aghinsa@gmail.com
Linkedin,GitHub,Gitter​ : @aghinsa

Time zone​ : ​IST (UTC +5:30)

Contributions
[WIP]​[​pull#492​]:Auto start operations without inputs (​issue#392​).

[Merged]​[​pull#454​]:Input validation using operations(​issue#382​):
Add ability to validate inputs using defined operations in the dataflow.

[Merged]​[​pull#387​]:Input forwarding to subflows(​issue#386​,​issue#368​):

[Merged]​[​pull#357​]:Add validation to definitions(​issue#349​):
Inputs of certain function can be validated according to the predefined function in the
definition.

[Merged]​[​pull#340​]:Change classification to predict(​issue#316​)

[Merged]​[​pull#333​]:Prediction as feature specific dictionary(​issue#106​)

[Merged]​[​pull#300​]:ConfigLoader(​issue#255​):Configloader which recursively loads
directory and filenames in a dictionary.

https://github.com/intel/dffml/pull/492
https://github.com/intel/dffml/issues/392
https://github.com/intel/dffml/pull/454
https://github.com/intel/dffml/issues/382
https://github.com/intel/dffml/pull/387
https://github.com/intel/dffml/issues/386
https://github.com/intel/dffml/issues/368
https://github.com/intel/dffml/pull/357
https://github.com/intel/dffml/issues/349
https://github.com/intel/dffml/pull/340
https://github.com/intel/dffml/issues/316
https://github.com/intel/dffml/pull/333
https://github.com/intel/dffml/issues/106
https://github.com/intel/dffml/pull/300
https://github.com/intel/dffml/issues/255

[Merged]​[​pull#299​]:Few minor fixes(​issue#265​,​issue#292​,​issues#291​,​issue#288​):
Rename entry_point to entrypoint.Remove msg parameter from model.Remove def
when defining features.Raise exception when model is not an instance when passing to
configs.

[Merged]​[​pull#268​]:Operation:RunDataFlow(​issue#254​):
Operation to run a dataflow as a subflow in an existing dataflow.

[Merged]​[​pull#253​]:Config,args cleanup and int values for src_url(now key)(​issue#207​):
Change models to use config decorator.Fix src_url(key) being int instead of string in csv
source.

[Merged]​[​pull#238​]:Move features from model context to model config(​issue#231​)

[Merged]​[​pull#226​]:Adding Tensorflow regression model(​issue#75​)

[Merged]​[​pull#221​]:Add hidden layer info to hash of model_dir(​issue#220​)

Project
Sub Org : ​DFFML

Abstract

Add networks/orchestrator to run distributed dataflows.Add new tutorials on using
DataFlow/Operations and how models/database abstractions etc interoperate within a
flow.

Description
This project consists of two parts:

1. Adding more​ concise tutorials for dataflow/operation ​in dffml docs.
2. Adding a ​Distributed Dataflow Orchestrator

Data Flow Facilitator for Machine Learning (DFFML) makes it easy to generate
datasets, train and use machine learning models, and integrate machine learning into
new or existing applications. It provides APIs for dataset generation, storage, model
definition etc. Under the hood ,a major portion of the work is done by the concept

https://github.com/intel/dffml/pull/299
https://github.com/intel/dffml/pull/265
https://github.com/intel/dffml/pull/292
https://github.com/intel/dffml/pull/291
https://github.com/intel/dffml/pull/288
https://github.com/intel/dffml/pull/268
https://github.com/intel/dffml/issues/254
https://github.com/intel/dffml/pull/253
https://github.com/intel/dffml/issues/207
https://github.com/intel/dffml/pull/238
https://github.com/intel/dffml/issues/231
https://github.com/intel/dffml/pull/226
https://github.com/intel/dffml/issues/75
https://github.com/intel/dffml/pull/221
https://github.com/intel/dffml/issues/220

Dataflow​ to facilitate flow of data between ​Operations​ as defined by the user or based
on ​Definitions​.

1​.The current tutorial on dataflow/operation is very long and misses out on some of the
new features.This project aims at adding tutorials on four topics

● Basic:​ Simple usage of operations and how data flows from one operation to

others.This will be illustrated by a dataflow which does basic calculations of
numerals.

● Locking: ​Usage of dataflow to manage locking of shared data.
● Configs: ​A gitter/irc bot which gets live messages from the channel and

publishes it to the dataflow.
● Subflows:​ The message received by the bot is forwarded to additional

subflow(s), which formats the message and runs nlp inference on the message.

2.Distributed dataflow:​Dffml aims to make it easy for users to generate/forward data to
models with the least effort possible,machine learning models are often trained on very
large datasets and as such adding functionality for distributed computing moves dffml
closer to this goal.

The plan is to have a new ​Distributed Orchestrator​ which uses a messaging
queue to publish data between nodes,where a ​node​ runs arbitrary operation(s).The
nodes are provided configuration on start as to how to communicate between each
other. ​NATS stream​(STAN)​ will be used as a message queue.STAN is selected
because it offers ​at least once​ delivery and as such which allows nodes to start their
subscription at an earlier point in the message stream, allowing them to receive
messages that were published before this client registered interest.The ​subjects​ ​used
in STAN and ​definitions ​used in dffml are more or less equivalent and both are ​asyncio
based.

The current approach is to have a ​node​ ​cli command instantiating a
NatsNodeOperationImplementationNetwork​,​which lets the ​master node​ know what
operations are allowed to be run by the node,example cli command instance would be
`​dffml service node run run_bandit run_safety​`,with any additional configs required by the node
to connect to the requires ​STAN ​channel(s).The ​master node​ which runs a
NatsPrimaryOperationImplementationNetwork​ has the ​DataFlow​ and instantiates every
operation instance required by the flow.The network publishes the operations to a STAN
channel which all the nodes are listening to.Any node which is allowed to run the operation
instantiates it and sends back an acknowledgment.At this point the ​DataFlow ​is set to run and is
waiting for inputs.

Inputs in the network are used to generate ​ParameterSetsPairs.
NatsNodeOperationImplementationNetwork ​sends these to a ​STAN ​channel where all the

https://github.com/nats-io/stan.py

nodes are listening.The nodes which have the operations instantiated will accept the
corresponding parameter sets,and after running the operation they add their outputs back to the
NatsNodeInputNetwork​,which publishes the ​InputSet​ to a channel where the ​master node ​is
listening.​NatsMasterInputNetwork​ ​accepts the new ​InputSet ​and the cycle repeats.

Timeline(Tentative)

Pre-GSoC (April 1 - May 4)

● Go through documentation of nats.
● Implement basic nats communication tutorials
● Work on other issues related to dataflow.

Community Bonding (May 4 - June 1)

● Finish any pending issues which might affect addition of the examples in the
tutorial.

● Complete the calculator example for the tutorial
Week 1 (June 2 - June 8)

● Complete the locking example
Week 2 (June 8 - June 14)

● Implement operations
○ to get data from live chat.
○ format it suitably to be forwarded as input to prediction model

 Week 3 (June 15 - June 21)
● Implement operation(s) to run the received message through nlp models

Week 4 (June 22 - June 28)
● Complete bot example

Week 5 (June 29 - July 5)
● Add documentation for the added dataFlow operations and finish the tutorial

Week 6 (July 6 - July 12)

● Implement
○ NatsPrimaryOperationImplementationNetwork
○ NatsNodeOperationImplementationNetwork

Week 7 - Week 8 (July 13 - July 19)
● Add unittest to verify that the dataflow is being instantiated properly

Week 9 (July 20 - July 26)
● Implement ​NatsMasterInputNetwork

Week 10 (July 27 - August 2)
● Implement ​NatsNodeInputNetwork
● Write tests to verify InputNetworks are working properly

Week 11 (August 3 - August 9)
● Integrate all the networks in the distributed orchestrator
● Final tests

Week 12 (August 10 - August 16)
● Document all the added features

Week 13 (August 17 - August 24)
● Buffer week

Stretch Goals
In case everything gets done earlier,i’m planning to work on integrating dataflow with
the web ui under development.

Post GSoC
Contributing to Dffml has helped me learn a lot.I’d be happy to stay part of the
community and keep contributing.I will be working on issues in the codebase,and will
work towards completing the web ui.

Other Commitments
I have my end semester exams scheduled in the first week of May,during the
community bonding period.I can only work for 2-3 hours during exam days(4-days in the
first week of GSoC timeline),other than that i don’t have any commitments.I’m only
applying to DFFML,and can easily give around 40 hours per week to the project.

