
PYTHON SOFTWARE FOUNDATION

Sub-organization
EOS Design System

Project
User Story - Frontend and UX

By
Kailash Kejriwal

Contents
1. Personal Details 2

2. Synopsis 3

3. Outline and methodology 5

4. Timeline 22

5. Contributions 24

6. Previous Experiences 24

7. About me 25

8. Stretched Goals 26

1

Personal Details

Contact Details
Name Kailash Kejriwal
Email kailashkejriwal21@gmail.com
Timezone Indian Standard Time (UTC + 5:30)

Profiles
GitHub kailash360
LinkedIn kailash360
Portfolio kailashk.me
Medium @kailash360

Education Details
University Indian Institute of Information Technology, Gwalior
Degree Bachelor of Technology
Major Computer Science and Engineering
Expected June, 2024
Graduation

2

mailto:kailashkejriwal21@gmail.com
https://github.com/kailash360
https://www.linkedin.com/in/kailash360/
http://kailashk.me
https://medium.com/@kailash360
https://www.iiitm.ac.in/index.php/en/

Synopsis

The EOS User Story project seeks to create a user-friendly and participatory site
where users may log in and request features, report errors, and so on. Users can
keep track of the status of their issues, vote on them, and leave comments on them.
The issues can then be reviewed, resolved, closed, or assigned status by the project
administrators. It functions as an effective feedback mechanism for organizations,
which is required for the creation of various products.

The goal of this project is to improve the user experience by improving different
areas. These ideas are as follows:

● UX/UI improvements in Desktop and Mobile devices
This will include refactoring of the Story page, and improvements in the My
Profile and Notifications page to enhance their UI and provide a better user
experience with more details.

● Making the application a Progressive Web App (or PWA)
This will allow the application to be installed in mobile devices and provide a
native-application-like interface to the user. It will also introduce pre-caching
the common files and assets in the browser cache. This, in turn, will decrease
the loading time of the application. These features of PWA will be in
accordance with web.dev/pwa-checklist. Apart from that, I will also work on
improving the UI for mobile devices to give a better native-app-like experience.

● Polish existing features and increase test coverage
This will include enhancing the current functionalities of the application like
reflecting network requests on buttons and adding requests templates for
products. This will also include adding more tests to the frontend and creating
a testing environment for the backend.

● Improving session management for user authentication
This will introduce a refresh-token in the authentication process, and this token
can be used to regenerate the JWT when it expires. This will also prevent the
user from getting logged out of the application in the middle of an activity.

3

https://web.dev/pwa-checklist/

● OAuth 2.0 and SAML Integration
OAuth 2.0 allow us to register on a platform without going through the entire
sign-up process. Integrating OAuth also allows the users to log in quickly and
easily. In EOS User Story, we can add OAuth 2.0 for popular services like Google
and SAML 2.0 using Okta. This will make the website more accessible and the
UX will be smoother.

● Report feature for stories
This feature will allow the users to report a story to the admin if it contains any
inappropriate content. The admin can then view the report and take action
accordingly. The user who created the story can also make this request to get
the story unpublished after a review by the admin.

● Email notifications
Email notifications will be sent to a user when any of the different cross-user
activities take place like when someone comments or votes on a story, replies to
a comment of the user or mentions the user in a comment.

● Resolve issues on GitHub and User Story
There are several issues open in both - GitHub and User Story. Apart from
adding and modifying new features, all these open issues will also be handled
and resolved.

4

https://developers.google.com/identity/protocols/oauth2
https://developer.okta.com/docs/guides/implement-oauth-for-okta/main/

Outline and Methodology

1. UX/UI Improvements in Desktop/Mobile devices
This will focus on improving the interface of the application to provide the users
with a smooth experience and make the frontend more interactive. The primary
tasks for this idea will be:
● Refactor the Story page
This will reconfigure the Story page and enhance the layout of the page. It will
introduce better story details, a more organized comment section, and also add
new sections like more stories from this product.The link to the design is User
Story - Story Page

● Fix Notifications page and My Profile page
The footer in both - Notifications page and My Profile page jumps to the top of
the page. This leads to UI inconsistency. The focus of this task will be to fix this by
rewriting the styling sheets and modifying the content or message to be shown in
that case.
Link for the design of notifications page: User Story - Notifications Page

2. Making the application a Progressive Web App
A Progressive Web App (or PWA) provides a native-application-like interface to
the users on mobile devices. It is installable and allows the files to be cached in
the browser.. This reduces the loading time of the application and comes with a
custom offline page. The EOS User Story frontend will be converted into a PWA
through the following tasks:

● Adding a manifest file
A manifest.json file will be added to the application. This file will contain all the
necessary information to make the application installable. It will define the
necessary properties of the application like:
a. Name: The name of the application that will be shown when it gets installed,

here EOS User Story
b. Short Name: The short name is used when there is insufficient space to show

the name, here UserStory
c. Icons: All the icons to be displayed when the PWA is installed
d. Start URL: The entry point of the application, here index.html
e. Display: Allows the app to be used as a native application. The value will be

standalone

5

https://www.figma.com/file/nKVmaGHjwD1OMdpE44a55q/Story-Page?node-id=0%3A1
https://www.figma.com/file/nKVmaGHjwD1OMdpE44a55q/Story-Page?node-id=0%3A1
https://www.figma.com/file/gEpsvaROv3ZpzqFK6KqoPA/Notifications?node-id=0%3A1

f. Theme Color: #86EAE4
g. Background Color: #091D2D

● Adding a service-worker
A service-worker will be added that can run parallel to the main thread and
behave as an interceptor for the requests. It will contain the different events
and respective callbacks that are to be executed when that event is fired, in
the background.
The behavior of the service-worker corresponding to each event in this task
will be:
● Install: When the service worker is installed in the browser, all the assets

and files will be saved in the browser cache.

6

● Activate: When the service worker will get activated, the old cache is
filtered out and removed from the browser.

● Fetch: This is the event when the browser makes any request to the
backend, either to fetch any file, asset, or data. In this event, it will be
checked if the requested file already exists in the cache, else the request
will be continued. This will also be responsible to handle cases like when
the user goes offline, or any unexpected error occurs.

7

● Custom offline page
The service-worker itself will display the custom offline page to the user. The
fallback page to be displayed is User Story - Fallback Page.

● UI developments
Apart from adding the configuration to make the application a PWA, I will
also improve the UI for mobile devices such that it provides a native-app-like
experience. The key modifications will include
● Responsiveness: I will work on improving the responsiveness of the

entire application to suit all mobile devices. This will require reconfiguring

8

https://www.figma.com/file/e7EvdLAU3P7olawecajRS3/User-Story---Offline-Page?node-id=0%3A1

the style sheets of different pages and adding more detailed styling
configurations.

● Removing scrolling glitches: Native applications are free from any form
of scrolling glitch and provide a smooth UI. I will also remove such
scrolling glitches from the User Story PWA and make sure that the
content does not jump when the page loads.

● Adding hamburger menu: Native applications provide a sliding menu for
navigation instead of a navbar on the top. I will create this sliding menu
and add a hamburger menu to the application to toggle the sliding menu.

● Finger-friendly touch targets: Small touch targets like buttons and links
make it difficult for users to locate and press them, especially on mobile
devices. This can be fixed by enlarging the button size such that the finger
pad can cover the target, and by highlighting the links sufficiently so that
the user can locate them easily.

● Disable text selection and text highlighting: Native applications do not
provide the option for text selection or highlighting. I will also work on
removing these actions from the PWA.

3. Polish existing features and increase test coverage
This idea will focus on polishing the existing features of the application like:
● Reflect network request on buttons

This will make the buttons disabled until the network request is complete. If
the network connection is slow, it will prevent the user from making
consecutive requests to the same endpoint. This will also keep the UI updated
with the current status of the action.
This will be done by adding a isSubmitting state that will check if a network
request has been made.

9

● Adding more tests
The new tests will cover a broader range of functionalities of the application
and will also include the situation where the user is not logged into the
application. The current tests already consider a wide number of
functionalities. Apart from hem, the tests that I am planning to add are:

● For frontend

User is not logged in User is logged in

Home page:
▸ Should show Sign In button
▸ User cannot vote stories
▸ Clicking on story opens the story

page
▸ Clicking on author’s name opens

the author’s profile
▸ Stories can be sorted by votes
▸ Pagination should display more

stories

Home page:
▸ Should show New Story option
▸ Should show the Notifications

icon
▸ User can vote the story, and then

unvote it

Forgot Password page
▸ Should have field to enter email
▸ Should show error on providing

invalid email
▸ Should submit a request when

email is valid

Forgot Password page
▸ Should redirect to homepage

Story page
▸ Should show all details of the

story
▸ Should show all the comments

and replies
▸ Should not show input field to

add a comment
▸ Should show all the status of

the story
▸ Should display the list of voters
▸ Should not allow to vote the

story

Story page
▸ Same as when the user is not

logged in
▸ Should show input field to

add a comment
▸ Should allow to vote and

unvote on the story

10

Cookies and Policies page
▸ Should display to the privacy

policy

Cookies and Policies page
▸ Should display the privacy

policy

● For backend
In the Strapi-based backend, tests will be added for the custom API
endpoints and controllers. This will be helpful to make the backend more
robust and help to eliminate any possible security issues in the backend.
I will be using Jest - a testing framework for creating the test environment
and writing the tests, suggested by the Strapi documentation itself. A
Strapi server instance will need to be developed in the test environment to
run the tests.

The primary tests for the backend will be:

Collection Tests

User Story ● Should create a story with a multipart request body
● Should create a story without multipart request

11

https://jestjs.io/
https://docs.strapi.io/developer-docs/latest/guides/unit-testing.html#unit-testing

body
● Should not create a story without title and

description
● Should not allow creating a story if the user is not

logged in

Custom APIs Logout
● Should log out the user

CheckAuthor
● Should return ‘true’ if the author is correct
● Should return ‘false’ if the author is incorrect

I will also add more tests and modify the existing tests based on the
feedback by the mentors.

These tests will be then integrated into the GitHub workflows to automate
the entire test process using CI/CD pipelines of GitHub Actions.

4. Improving session management for user authentication
The backend of EOS User Story is developed using Strapi which is built on Koa.js.
In this framework, authentication tokens are made to store in the cookies by
default. After the token expires, the user will need to log in again to the
application. The session may expire when the user is writing a story, or
commenting on a story. This can spoil the poor user experience.

I will add refresh tokens for the session management.. The refresh tokens will be
used to regenerate a new authentication token or JWT, and store it in the cookie.
So, if the token expires when the user is performing an important activity, it will
get the new token in the background, and provide a smooth user experience.

This will be done in the following tasks:
● Create a field for the version of the refresh token
A field called tokenVersion will be created in the Users collection that will
denote the current version of refresh-token for the corresponding user. It will
allow us to regenerate new tokens if the previous tokens get revoked. Since it
should not be exposed to the API, the field will be private.

12

● Add a controller to generate the refresh token
I will add a controller that will be needed to generate the refresh token after all
checks have been passed. It will be used for the following actions:
○ When a user logs into the application
○ When the password is changed by the user.
○ When the refresh token itself gets expired

The refresh token will consist of the current version of the refresh token
(tokenVersion), objectId of the user (id), and the expiration time (exp) of the
refresh token.

13

● Adding a controller for regenerating the JWT
I will create a controller refreshToken that will regenerate the authentication
token or JWT after necessary verifications. This controller will check if the
refresh token is valid by comparing the versions. This controller will be also
used to regenerate a new refresh token after the old one gets revoked.

● Adding a controller to revoke the refresh token
The refresh token may be exposed to any third party, or the user may change
the password for security reasons. In both cases, it is necessary to revoke (or
render useless) the current refresh token, so that a new refresh token can be
generated. This will use a controller where the existent version of the present
refresh token will be checked, and the value for tokenVersion field in the Users
collection is increased by 1. Since the current token contains the old value of
tokenVersion, it gets revoked.

14

● Adding routes for the controller
The routes will be defined in a JSON file present in the format
extensions/user-permissions/config/routes.json, with each route
dedicated for each of the controllers.

Route Method Controller

/refreshToken POST refreshtoken

/revoke POST revoke

● Integrating the routes with the frontend
I will define custom services for making the required API calls to regenerate or
revoke a token. I will use a timeout tracker to check if the JWT in the cookies
has expired or not. If it expires, a request to /refreshToken will be made to
fetch the new JWT.

15

This will also make sure the user gets logged out if an invalid token is sent in
the request. I can also modify the method of implementation, based on the
feedback by the mentors.

5. OAuth 2.0 Integration
OAuth 2.0 allows us to register on a platform without going through the entire
sign-up process. Integrating OAuth also allows the users to log in quickly and
easily. In EOS User Story, we can add OAuth 2.0 for popular services like Google
and Okta. This will make the website more accessible and the UX will be
smoother.

Google OAuth 2.0

16

https://developers.google.com/identity/protocols/oauth2
https://developer.okta.com/docs/guides/implement-oauth-for-okta/main/

SAML Integration using Okta

I will also add SAML for user authentication using Okta SAML 2.0 provider. It will
enable Single Sign-On (SSO) which in turn will allow the users to access the EOS
User Story platform by logging into the application only once.

I will use SP-Initialized SSO so that when an unauthenticated user visits our
application, he/she will be redirected to the login page.

To integrate SAML with Okta, we will need to create an application on Okta
Developer Console and configure the SAML integration settings. The
configuration settings will include the credentials of the client to be used for
verification. In this case, it will be an email. This will provide us with an
application URL to be used for making the authentication request from the
client-side.
Now when a user tries to access the User Story application, he/she will be
redirected to the login page if that user is not authenticated.

17

18

6. Report feature for stories
This will allow the users to report any story that contains any inappropriate
content. The reported stories will be displayed in a User Story Reports collection,
and the admin will be able to take action for each report.

While reporting a story, the users will need to select a reason that the story is
reported. It can be done by providing pre-defined options like Abusive Content,
Spam, Not relatable to EOS, Duplicated Story, and so on.

Link for the design of Report modal: User Story - Report Modal
In the Strapi-based backend, the reports will be stored in the User Story
Reports collection, which is a many-to-one relationship with both Products and
Users collection. So, a single user can make multiple reports, and each product
can have multiple products under it.

When a new report is created, an email will also be sent to all the administrators
regarding the new report. This will be done by adding the logic to send email in
the afterCreate life cycle in the controllers of the User Story Reports collection.

7. Email Notifications
Emails notifications can be added for different functionalities to notify the user
with any update of a story or comment. This will increase the engagement of the
system with the user.
I will enable Email notifications for the following actions:

● When someone comments on my story
● When someone replies to my comment
● When someone mentions me in a comment

19

https://www.figma.com/file/iwlPpGbpFyyrVbkN2dfCAA/User-Story---Report-Modal?node-id=0%3A1

8. Resolve existing issues on GitHub and User Story
Apart from implementing the ideas discussed above, I will also work on fixing
the current issues on GitHub and User Story. Some issues that need special
attention are mentioned below:
● Issue #28: Shareable search result link for stories

This will need the use of query strings to share the field-value pair of the
filters. The query can then be then parsed using the query-string package.
So, if a query is ‘?category=accessiblity&product=EOS%20Icons’ , it
would mean that ‘all the stories of category Accessibility for product EOS
Icons’ should be displayed.

● Issue #29: Improve code quality, bug fixing
This issue mentions replacing the excessive use of the useState hook with a
better state management technique. I will be using the useReducer hook for
pages like Story.js.
There will be an initial state to contain the default values of the fields, and a
reducer will be defined to update the values in the state based on the type of
action that is dispatched. This will help to maintain a single source of state.

● Improve design in case no stories are found
The application currently shows a simple message if no stories are found - be
it for a filter, or a particular user. This can be fixed by modifying the view if no
stories are found

Link for new design: User Story - No Stories Component

20

https://github.com/EOS-uiux-Solutions/user-story/issues/28
https://www.npmjs.com/package/query-string
https://www.figma.com/file/DlKIjDFbjZXA82zHPKbEsp/User-Story---No-Stories-Component?node-id=0%3A1

● Fix Request Templates
The feature of rendering request templates while creating a story, has
already been implemented. But the templates are not rendered on the
client-side. I will also work on fixing this issue.

21

Timeline

1. Community Bonding Period (May 20 - June 12)
● Continue to work on minor bugs and possible improvements.
● Spend more time learning about the workflow of EOS, and getting familiar

with the community members and mentors
● Get the proposed designs reviewed by the mentors, to have a final outcome
● Learn more about the best practices of Progressive Web Apps

2. Week 1 (June 13 - June 19)
● Work on refactoring the Story page according to the proposed design
● Add new sections on the Story page
● Fix responsiveness of the Story page

3. Week 2 (June 20 - June 26)
● Fix the notifications page according to the proposed design
● Remove UI inconsistencies on the My Profile page
● Start working on making the application a PWA

4. Week 3 (June 27 - July 3)
● Add manifest and service workers
● Improve the UI for mobile devices
● Test the features by installing them in a mobile device

5. Week 4 (July 4 - July 10)
● Add network request status on buttons
● Add tests for the frontend
● Fix any failing tests

6. Week 5 (July 11 - July 17)
● Create test configuration for backend
● Write new tests for the backend
● Integrate testing job in CI/CD pipeline for backend
● Fix any failing test in the backend

7. Week 6 (July 18 - July 24)
● Define controllers for generating and revoking refresh tokens
● Create routes for the controllers
● Integrate the routes with the frontend in custom services

22

8. Week 7 (July 25 - July 31 | Phase 1 Evaluation)
● Take review from mentors
● Work on any possible improvements
● Start working on OAuth 2.0 Integration

9. Week 8 (August 1 - August 7)
● Add Google OAuth 2.0 authentication
● Integrate with SAML 2.0 using Okta
● Finish working on OAuth 2.0

10. Week 9 (August 8 - August 14)
● Develop the Report modal component
● Integrate the APIs with the Report modal
● Write Cypress tests for the Report feature

11. Week 10 (August 15 - August 21)
● Add new Email templates for different actions
● Add logic for sending Email Notifications

12. Week 11 (August 22 - August 28)
● Start working on fixing the existing issues on GitHub and User Story
● Add the feature to share search results via URL

13. Week 12 (August 29 - September 4)
● Modify state management in various pages by replacing multiple useState

hooks with a useReducer hook
● Modify the view when no stories are found, according to the design
● Finish any pending task

14. Week 13 (September 5 - September 12 | Final Evaluation)

23

Contributions
Contributions in EOS User Story Frontend

▸ Pull Requests
▸ Issues

Contributions in EOS User Story Backend (Strapi)
▸ Pull Requests
▸ Issues

Contributions in EOS Icons Landing
▸ Pull Requests

Contributions in EOS Wiki
▸ Pull Requests

Previous Experience

Internships
● Blockchain Developer Intern | WalletSocket

(January 2022 - April 2022)
● Developed an automated CiceroMark markdown generator using Cicero

Engine and Concerto data models of Accord Project
● Integrated Web 3.0 services into the document generator to exhibit the

on-chain block history
● Optimized the document generation scripts to reduce compilation time by 70%

● Full Stack Developer Intern | InfuzeX Ventures
(August 2021 - December 2021)
● Developed a multi-level academics management system and cross-language

learning platform having 50,000+ registered users
● Built and modified 100+ reusable components using ReactJS, Redux and

Material UI, leveraging existing components
● Designed and implemented a scalable RCM-based backend in NodeJS +

ExpressJS, WebSocket protocol to exchange data using REST APIs

● Web Developer | Uthaan IIITM
(July 2021)
● Designed and developed a website for my institute's journalism and

recreational club Uthaan, using MERN stack.

24

https://github.com/EOS-uiux-Solutions/user-story/pulls?q=is%3Apr+author%3Akailash360+
https://github.com/EOS-uiux-Solutions/user-story/issues?q=is%3Aissue+author%3Akailash360+
https://github.com/EOS-uiux-Solutions/strapi/pulls?q=is%3Apr+author%3Akailash360+
https://github.com/EOS-uiux-Solutions/strapi/issues?q=is%3Aissue+author%3Akailash360+
https://github.com/EOS-uiux-Solutions/eos-icons-landing/pulls?q=is%3Apr+author%3Akailash360+
https://github.com/EOS-uiux-Solutions/wiki/pulls?q=is%3Apr+author%3Akailash360+

● Integrated Cloudinary services into the RCM-based backend to host
multimedia dynamically

Open Source
● Git Init FOSS 2021 | IIIT Gwalior

I contributed to more than 10 repositories, by successfully making 20+ Pull
Requests and creating 15+ new issues. I also emerged to be one of the Top 5
contributors in the same.

● Hacktoberfest 2021
I successfully completed the milestones of Hacktoberfest 2021 by making 25+
Pull Requests over 15+ repositories.

● Other Contributions
Apart from that I have contributed to major organizations like AOSSIE, Oppia,
The Palisadoes Foundation, Mozilla, and NodeJS.

About Me
I am a second-year undergraduate pursuing a Bachelor of Technology in Computer
Science and Engineering, from the Indian Institute of Information Technology,
Gwalior. I have always been keen to learn about new technologies, and use them to
build scalable products. This enthusiasm landed me in the field of development,
Web Development to be precise. I found it very interesting and gradually went on
learning deep into this domain. I also developed several personal projects. It was a
wonderful experience. Then, I came across Blockchain technology and I am still
learning more about this field.
I was told that Open Source is a rewarding field. So, after my freshman year ended, I
ventured out to learn about contributing to open source, and then started
contributing to different projects which suited my knowledge. It really feels amazing
when your PR gets merged and you know that your contribution has left an impact
on the thousands of users who use your software. Open source also helped me to
learn a lot of best practices which are difficult to learn when you are working on
some personal project.
I also have a knack for writing. So I tried my hands in writing articles on the latest
technologies. I frequently publish my articles on Medium.com.
Apart from coding, I love to read books on history and listen to music in my free time.

25

https://medium.com/@kailash360

Stretched Goals
These are the ideas that can be implemented once all the ideas discussed above are
completed successfully.
● Email Preferences

An Email Preferences section will be added in the User Story, that will allow the
users to choose the type of emails that he/she wants to receive.
Link to the design of Email Preferences Modal: User Story - Email Preferences
In the backend, the Email Preferences will be stored as a Strapi collection
component, and this component will contain each preference in Boolean format.

● Latest Updates page
This will be a new page in the application to show all the latest developments in
the EOS organization. The content will be uploaded solely by the admin, while
the users will have the liberty to upvote/downvote an update. Each update will be
linked to a product. This will allow the users to filter the updates of a particular
product.
Link to design for Latest Updates page: User Story - Latest Updates page
In the backend, the updates will be stored in a collection - User Story Latest
Updates. This collection will be in a many-to-one relationship with the Products
collection such that there can be multiple updates for a single product.

26

https://www.figma.com/file/Uy5Ky0VfrdVpYVyPu22jDw/User-Story---Email-Preferences?node-id=0%3A1
https://www.figma.com/file/P2wdsTL5koPbG3sI2UEepz/User-Story---Latest-Updates-page?node-id=0%3A1

