
Python Software Foundation

Sub-org: EOS Design System
Project: EOS Icons Next.js & TypeScript
Migration
By: Ayush Satyam

Contact information :
Name: Ayush Satyam

Email ID:

Github Username: https://github.com/ayushsatyam146

Mobile: (+91)

Country: India

Timezone: Indian Standard Time (UTC +05:30)

Primary Language: English

Linkedin: https://www.linkedin.com/in/ayush-satyam-179ba4197/

University Info:
University Name: Shri Mata Vaishno Devi University, Jammu & Kashmir

Current year and Degree: 3rd Year, Bachelor of Technology in Computer
Science & Engineering

Expected Graduation Date: August 2023

Code Contribution:
I have been actively contributing to the EOS Icons repository since January
2022 and have made substantial contributions to it. I have also suggested and
worked on some ideas for UI/UX improvement along the way. Some of the
major ones are listed below:

● [Merged][Bug] !22, !126: Fixing the site behavior on refresh and making icon links
shareable. Persisting URL parameters, search value, and vertical position on
refreshing the page or sharing an icon link fixing issues #16, #124.
● [Merged][UX Enhancement] !81: Added functionality to take the user to the home
screen whenever the eos-icons logo in the navbar is clicked. Fixes issue #80.
● [Merged][UX Enhancement] !119: Added functionality to open the icon editor panel

https://github.com/EOS-uiux-Solutions/eos-icons-landing/pull/22
https://github.com/EOS-uiux-Solutions/eos-icons-landing/pull/126
https://github.com/EOS-uiux-Solutions/eos-icons-landing/issues/16
https://github.com/EOS-uiux-Solutions/eos-icons-landing/issues/124
https://github.com/EOS-uiux-Solutions/eos-icons-landing/pull/81
https://github.com/EOS-uiux-Solutions/eos-icons-landing/issues/80
https://github.com/EOS-uiux-Solutions/eos-icons-landing/pull/119

on double-clicking an icon, giving users a smooth UX to edit and download icons.
Fixes issue #118.
● [Merged][Code Enhancement] !123: Wrapped animated icons into a defined
component for better understanding & readability of the codebase. Fixes issue #122.
● [Merged][UX Enhancement] !101: Closing the icon editor Panel on clicking outside
the icon editor component. Fixes issue #100.
● [Merged][Bug & UX Enhancement] !129: Fixing the app’s behavior on clicking the

tags in HowTo Panel. Make tag links shareable by retaining the app state for shared
links. Fixes issue #128.

All other Pull Requests are listed here (17 Merged, 1 Closed). All Issues created
are listed here (10 Closed, 1 Open).

Synopsis:
I will be working on the EOS Icons website to make it more reliable, faster,
operational, and easy to maintain. I will also add various UI changes like
adding a navigation panel for icon categories and adding a side drawer for
the HowTo section & icon editor panel. Along with these, I will also add some
other significant UI/UX changes to the website after a thorough discussion
with mentors to improve the overall user experience.
I will migrate the project to TS and Next.js and also implement proper file
management and state management in the project ensuring clean code and
easier scaling. Migration to TS and Next.js will ensure better SEO and fewer
bugs. I am planning changes in categories and icon editor UI for a better user
experience. I plan to add unit tests by using Jest & React-testing-library, and
e2e testing with Cypress.js. I will integrate these tests with Github CI/CD
pipelines and ensure proper development workflow using es-lint, prettier and
husky.
I’ve already dug deep into the code, fixed some major functional and UI/UX
bugs, and introduced and worked upon new ideas that might help make a
positive change in the project. I am comfortable writing JS/TS, React, and
Node.js for a while now. I also have some experience working with Next.js
during my internship last year. I try to use the best coding practices while
working. I am a fairly quick learner and open to learning new concepts and
ideas along the way. I hope for a fruitful collaboration with mentors and other
contributors to complete this project.

https://github.com/EOS-uiux-Solutions/eos-icons-landing/issues/118
https://github.com/EOS-uiux-Solutions/eos-icons-landing/pull/123
https://github.com/EOS-uiux-Solutions/eos-icons-landing/issues/122
https://github.com/EOS-uiux-Solutions/eos-icons-landing/pull/101
https://github.com/EOS-uiux-Solutions/eos-icons-landing/issues/100
https://github.com/EOS-uiux-Solutions/eos-icons-landing/pull/129
https://github.com/EOS-uiux-Solutions/eos-icons-landing/issues/128
https://github.com/EOS-uiux-Solutions/eos-icons-landing/pulls?q=is%3Apr+author%3Aayushsatyam146
https://github.com/EOS-uiux-Solutions/eos-icons-landing/issues?q=is%3Aissue+author%3Aayushsatyam146+is%3Aclosed

Which of the published tasks are you interested in?
What do you plan to do?

I am interested in Project idea 3: EOS Icons - TypeScript, Next.js, and guides for
the EOS Design System.

The goal is to migrate the entire EOS Icons landing app to Next.js and transition
towards using TypeScript for the application. I also intend to change some UI/UX
elements to make the app more intuitive and operational.

https://gsoc.eos-icons.com/project-ideas/projects-ideas#project-idea-3-eos-icons-typescript-next.js-and-guides-short-project-175-hours

Project Plan & Milestones:

I am planning to migrate the EOS icons website to the Next.js ecosystem and

convert the existing codebase to use TypeScript resulting in more manageable

and scalable code. I also plan to add new features, and several new UI/UX

changes to make the existing app more intuitive and easy to use for the

end-user.

The Project is divided into 4 milestones, gradually explaining the needs and the
workflow of the project.

1. TypeScript & Next.js Migration

Currently, the EOS icons website is a Single Page Application (SPA). Due to the

client-side rendering nature of React, it makes the app hard to crawl and difficult

to render for the first contentful paint. All these things hinder the SEO

capabilities of the website.

We can use custom meta tags for each page to boost SEO rankings. Along with
the migration of the existing public/index.HTML page headers in the
_document.js sample page provided by Next.js

I am planning to serve all pages statically as it will drastically improve the
performance of the app, and also it is not much needed as we don't need to
render anything on the server. I will do the migration in a series of steps.

a. Migrating the pages, utils, hooks, components & modules

I plan to begin the migration from Pages as it is the most important
part of any Next.js application because routing and Project structure
depends on the Pages directory.

I will move the pages, utils, hooks, and modules from the old project to
the new Next.js project and simultaneously convert the code & logical
elements to TypeScript from Javascript.

TypeScript Migration Workflow Diagram

During the migration of components, I will follow a bottom-up approach
i.e. converting smaller components first so that bigger components that
are using them get migrated easily. According to the above diagram,
IconEditor will get migrated first, then IconSet, Home, and then App.

b. Routing

Managing the routing in Next.js won’t be a big issue as the routing in
Next.js depends on the files and sub-directory structure of Pages
Folder. I plan to handle routing after the migration of all logical and
fundamental Javascript to TypeScript.

c. Styling

The older eos-icons project uses SASS for styling. It follows the 7-1
Ladder architecture for writing SASS. Since most of the app’s styling is
going to remain the same with very little addition for newer
components we can use the exact SCSS styles from the older project.
There won't be any issues in integration with Next.js as it supports
SASS natively.

d. Improvements in Codebase

The current codebase is well catered to the needs of the app but we
can further improve it to ensure better scalability.

I am planning to do a lot of significant improvements to the existing
codebase. Since it will get a lot cumbersome to migrate unmanaged
code and then add the improvements, I am planning to do these
improvements along with the code migration process. I am
describing all the possible improvements in the next section.

2. Improvements in Codebase

The codebase is well suited for the current version of the app. However, it will
get more difficult and complex to work with as the app grows. It doesn’t enforce
any particular guideline for declaring or managing the states, using hooks, or
component nesting.

● Splitting the code base into well-managed file/directories

There are many instances in
the codebase where multiple
separable components are
present in the same file
making the component
excessively complicated.

One such example is
IconSet.js in the present
codebase.

This component contains
most of the app logic for one
of the most important
sections of the site. But this
section contains components
and props for other child
components which should
ideally be separated from
each other.
For example, the
ShowHowToUse component

https://github.com/EOS-uiux-Solutions/eos-icons-landing/blob/master/src/modules/IconsSet.js

should be separated into a different file in the components directory.

Another such example is the Docs.js file. This file contains
documentation for the app for all use cases like React, Vue 2/3 & HTML
inside the component, making it really lengthy.
I am planning to separate each section into its own component so that
there is a logical separation between different sections, also it will help in
routing the docs section in a better user-friendly way.

I am planning to add sub-routes to each section (React, Vue, HTML,
In-your-application) of the Docs Page, so that users can share a direct
URL of a particular section.

Sample URL - “https://eos-icons.com/docs/react”

The above URL will lead the user directly to the react Docs Page.

https://github.com/EOS-uiux-Solutions/eos-icons-landing/blob/master/src/pages/Docs.js

● Introducing Proper State management
Proper state management is vital for the app. We are using React’s
Context API to manage some important global states of the project
present in EosIcons.store.js. We control various global app states and
their actions through this store for the whole app.
But, a major portion of the app containing the majority of the business
logic is contained in the IconSet.js file. There is no active state
management present for the states of this file.

These are all the states that are associated with the IconSet.js file.
I am planning to use the Context API for generating a global object of
IconSet’s state variables. I will use the useReducer hook to manage the
states and their actions. The main reason for using Context API is to
maintain consistency across the whole project. We are already using
Context API for passing the Eoc.IconStore.js file’s state. Also, our data
doesn’t update very frequently like a social media app hence using
something like Redux will unnecessarily increase the bundle size
significantly.
The majority of the code in the IconSet.js file comprises functions to alter
the states of the file. If we move the states and actions of this component
into a dedicated file, then we will have a centralized place for introducing
new features and fixing bugs by having new states and actions. Also, it
will help in abstracting out a lot of logical parts from the main component
making the code a lot cleaner and easier to work with.
The component shown below is present in the IconSet.js file to call the
Tabs component, taking a lot of states as props for the Tabs component.

https://github.com/EOS-uiux-Solutions/eos-icons-landing/blob/master/src/utils/EosIcons.store.js
https://github.com/EOS-uiux-Solutions/eos-icons-landing/blob/master/src/modules/IconsSet.js

If we manage states properly we won’t need to pass every required prop
manually to the component; we can just use useContext in the
corresponding component’s file and use the value of whatever state we
want.

Tabs component in Current file

After we transfer all states into a store we can just call components in the
IconSet.js file and use the state values from the nested children at any
level eliminating the need to pass props manually for every level. The
Tabs component will look something like shown below.

A lot of components will get cleaned up, making the code in IconSet.js
cleaner and more scalable; which will be a huge productivity boost for
other developers working on this project in the future.

● Routing
Since Next.js comes with its own router we will need to migrate to next’s
inbuilt router. While we are migrating to the new router we can separate
out the components of the Docs Page and use nested routing for each
section of the Docs Page, so that users can directly share the URLs to

specific documentation of their needs.
Apart from separating the URL to each section, I’m planning to add
functionality for shareable links to every relevant part of the page. I will
further explain this in UI/UX design Changes section

● Updating the search logic to use algolia
We use custom search functions implemented in the EosIcons.store.js file
for implementing the search logic in the app.
This approach will work in most cases but sometimes it also leads to bad
search results.

For example, if we search the keyword “car” the term “add_card” is
treated as a better suggestion than the term “car_rentals” affecting the
search results in a bad way.
Also, we find the matches for the search value in each category of icons
and show all these icons category-wise. An icon that might be a better

https://github.com/EOS-uiux-Solutions/eos-icons-landing/blob/master/src/utils/EosIcons.store.js

match doesn’t show up first because it belongs to a category that is
positioned lower alphabetically.
I am planning to remove categories in search results for better search
recommendations.
Also, as discussed in the development slack channel of the EOS
community we currently have an algolia instance for search queries. But
currently, it is inactive and we are not using it for search queries because
frontend code logic is not updated accordingly to consume search
results from algolia.
I am planning to update the frontend code logic to consume algolia for
search queries. Since algolia provides a search engine as a service for
custom datasets, our search results will get more accurate and any scope
for logical flaws in the implementation of search logic will be eliminated.

3. UI/UX changes

I have made a Figma mockup for all the UI changes that I have
proposed. You can take a look at the Figma wireframe here. I am also
including a Figma prototype for the designs which I have linked
here. I am attaching a video link here.

● Introducing navigation for Categories (UI Changes)

Currently, icon categories are shown as a small dialog box besides the
search bar. Icons in all the categories have been laid out neatly in the
UI, but because there are so many icons present in each category it
may not be intuitive for the user to know that there are several more
categories of icons that they can explore.

I am planning to introduce a navigation menu below the search bar
listing all the categories of icons. It will instantly let the user know that
there are more categories of icons that can be explored, and also
make the workflow easier by making the categories more navigable.

Along with all the default categories I’m planning to add a category
called “Popular icons”. This will contain all the icons that are used
most frequently. As discussed with mentors we already have the
analytics in our backend so we can use the number of downloads or
number of clicks to populate “Popular icons”. This will be the default
Tab on the first-page load. All other categories will come after the
popular icons category.

These categories will automatically get highlighted according to the

https://www.figma.com/file/hb3Xnb0l7PCGDyoHoGooMj/EOS-icons-Home-page?node-id=0%3A1
https://www.figma.com/proto/hb3Xnb0l7PCGDyoHoGooMj/EOS-icons-Home-page?node-id=15%3A25&scaling=min-zoom&page-id=0%3A1&starting-point-node-id=15%3A25
https://drive.google.com/file/d/1pr6eVlHgUgJZlMyBz-9G5OBmwhJ-YDHN/view?usp=sharing

scrolling of the page, and we can also click on a particular category to
instantly scroll that section of the page.

This way it will be easier for a user to navigate to all the categories,
and they will instantly know about all the available categories. This
will solve a major UX hurdle that we currently have on the site.

I am attaching the current and expected view of the home page.

Current view

Expected View

● Introducing a Side drawer (UI Changes)

As mentioned in the GSoC project ideas list we need to show the users
all the possible options for using the icon in the HowToUse section.
But, it is already taking up a lot of vertical space in the current UI. If we
include all the options in the HowTo section of the current UI, then the
icons will get pushed further down.

Currently, in the HowTo Use section, we are just showing how to use
the EOS icons in the form of an HTML tag. We can use the icons with
React & Vue2/3 as well. We are not showing how to use the icons in
React and Vue. Also, we are not showing any of the customizations that
we can achieve with the HTML tags.

We need to show the user all the possible ways of using an icon
without taking up much space. I’m thinking of pushing down all the
information to a side drawer widget. We will move the icon editor panel
too inside the widget so that the user gets all the things that they might
want from a single widget.

We will give customized code snippets according to the icon selected
and an option to toggle the service user wants to use (React, Vue 2/3,
HTML). The code snippets will contain all the available prop values
and if the user changes any props like color, rotation, or size in the
icon editor the code snippet will get updated accordingly. The user
will edit the icon and copy the generated code snippets to use the
icon. We will also link the Docs section of the selected section in the
side drawer panel.

Since the side drawer panel will show all the places users can use
the icon. It will instantly let the user know about the flexibility that
eos-icons provide for using the icons, right after they select a
particular icon.

I am attaching pictures below to show a rough overview of the
expected UI.

Expected UI

● Copy button in code snippet and sections in Docs (UI
Changes)

There’s no button to copy code for any section of code in the Docs.
Users can view all the sample code snippets for all documentation but
they can’t copy the code snippet directly from the Docs. I will add a
button to copy all the code snippets directly with a single click.

Also, currently, there is no way for a user to share the link of a specific
section of the Docs page. For example, if the user wants to share a
specific link pointing to the “Using Animated Icons” in the “React”
section they can’t do it.

I’m planning to add a share link button right next to the heading of
each section which will copy the link of that particular section to the
clipboard. When the user shares this link with another user, they will
just land on that specific section of the website. I am adding a mockup
of the expected UI below

Expected UI

● Click outside to deselect an Icon (UX Change)

In the current UI if we want to use an icon we can select it, but when
we want to deselect an icon we have to click on that icon again or just
click on the logo of the website present in the navbar.

A very normal and expected user behavior is to click on an empty
space to deselect the currently selected icon. We don’t support this
functionality currently.

I’m planning to add functionality to deselect an icon selection by
clicking on any empty space inside the webpage.

I have already implemented a similar feature to close the Icon editor
panel on clicking outside. I created a custom hook called
useClickOutside for implementing this. We might need to look out for
deeper nested components for the proposed feature but it can be
done in a similar fashion as we did with the icon editor panel in PR !101.

https://github.com/EOS-uiux-Solutions/eos-icons-landing/blob/master/src/hooks/useClickOutside.js
https://github.com/EOS-uiux-Solutions/eos-icons-landing/pull/101

4. Testing & CI/CD Pipeline Integration

I am planning to implement unit testing and end-to-end (e2e) testing using Jest,

react testing library, and Cypress.js respectively for the whole project. I plan to

use Jest & Cypress.js to maintain consistency among the other EOS design

system projects. Jest & React testing library are recommended by the Next.js

team for unit testing and it integrates well with React and Next.js ecosystem.

Cypress offers fast test execution and better debugging capabilities. It

eliminates the need for any other frameworks or assertion libraries.

Due to the nature of the project, we have a lot of complex user interfaces in the

app. Unit testing will ensure that all stand-alone components and functions are

working properly after any changes, while E2E testing will let us test exact user

behavior while using the app across various user flows. We can also implement

vertical e2e testing for certain components to ensure that other important

nested children components are working fine. The majority of the tests will be

unit tests as they provide better insights for debugging, and are not that

computationally expensive compared to e2e tests. We will use e2e tests for

testing the behavior in some of the major user workflows like editing and

downloading an icon, Navigating around the site, visiting Docs, etc.

After implementing the tests I will also integrate them into the Github CI/CD

Pipelines. This will eliminate the need for manual testing of the future Pull

Requests.

Following the true unit testing methodology, I will make unit tests for all the

components, hooks, and standalone pure utility functions, to ensure that all

the smaller components are working correctly inside the app.

Some of the e2e tests that I plan to implement -

● The user is able to navigate across all pages and tabs and access the

default view of each page

● The user is able to select and download all icons (static and animated)

from the top and bottom of the page.

● The user is able to access and scroll to the Docs of each section.

● The user is able to edit and do the icon customization in the side

drawer panel and download it.

Timeline:
Community Bonding (May 20 - June 12):

I'll use this time to set out my objectives and discuss the project's workflow with

my mentors. I’ll also discuss and try to finalize all the UI/UX changes that I have

proposed. I’ll solidify the requirements and the plan of action. I'll also familiarize

myself with the EOS workflow and begin working with the scrumban technique. I'll

also take advantage of this community bonding time to get to know all of the other

GSOC 2022 participants as well as the mentors.

Week 1 (June 13 - June 19):
● Setting up the Next.js project with the initial configuration.
● Setting up tsconfig.json for TypeScript along with the initial setup of ESLint, prettier

and husky.
● Planning out the migration process by sorting the order of migration of pages,

components, and functions.

Week 2 (June 20 - June 26):
● Start with the migration of the pages directory of the project.
● Work upon migration of components, utils, hooks, and functions.
● Rearrange Docs component for nested routing.

Week 3 (June 27 - July 3):
● Complete the component migration process.
● Ensure proper file management of the code-base

● Splitting the code-base into separate files and directories if needed.

Week 4 (June 4 - July 10):
● Ensure proper state management in the code-base.
● Implement state management using Context API and useReducer hook.
● Separating functions and other logical units of the code-base.

Week 5 (July 11 - July 17):
● Complete the migration of the functions and other units.
● Migrate code to use the default Next.js router.
● Implement nested routing in the Docs section.

Week 6 (July 18 - July 24):
● Resolving issues that might appear during the migration process and ensuring that

a minimal number of side effects are running in the app.
● Remove current search logic implemented in the frontend.
● Use algolia for implementing the search feature.
● Update UI to show the best search results regardless of the category of the icon.

Week 7 (July 25 - July 31):
● Make a navigation bar to list all categories on the home screen so that users can

look and scroll through all available categories.
● Add a category called “Popular icons” to the list of icon categories.

Week 8 (August 1 - August 7):
● Introduce one of the major UI changes by making a side drawer
● Refactor the UI of the icon editor Panel and move it inside the side drawer.
● Add a feature for having code snippets in the HowTo section for React/Vue/HTML

and move it inside the side drawer panel.

Week 9 (August 8 - August 14):
● Change the UI elements of the Docs section
● Include a share link button for every section in the documentation.
● Introduce a copy button in code snippets present in the docs section.

Week 10 (August 15 - August 21):
● Discuss and plan out unit tests for the project.
● Start implementing unit tests for various components.
● Implement unit tests for other functions, hooks, and utils.

Week 11 (August 22 - August 28):
● Continue with unit testing of various components.
● Design user flows for implementing e2e testing.
● Implement e2e tests for all user flows in Cypress.js.

Week 12 (August 29 - September 4):
● Continue implementing e2e tests.
● Debug and resolve any new issues that might appear during the development or

testing process.
● Integrate Github CI/CD pipelines to the tests.
● Resolve any final issues that might appear in the code-base and wrap up the

project

Previous experience:
I am well accustomed to the Javascript-based ecosystem of web development

and most of my work till now has been around frameworks like React and Node.js

in the field of web development.

I got started with HTML, CSS, and JS in my first year of bachelor’s and slowly

learned all the new popular web development frameworks as I moved ahead.

I had done a web development internship at Pravegak Technologies last year,

which was a great learning opportunity for me. During my internship, I made

backends for a couple of apps in Node.js. The first app is a chat app named

unicohub. The second app is a multiplayer online game app named Skribo.

I migrated Skribo to a Node.js backend, earlier it was using Firebase. I also

redesigned certain API endpoints and implemented content and query caching to

optimize the backend. The app’s user base has grown significantly since then and

now the app has over 100,000+ downloads.

I also made various plugins for Shopify during my internship period. I also worked

on some websites in React.js and Next.js during my internship period, like a CMS

(Content Management System) for the above-mentioned apps and some

blog-based sites for clients.

Other than this I am very passionate about Operating systems and compiler

design, and in my 5th semester, I made a project called OPUS. OPUS is an

https://www.pravegak.in/
https://play.google.com/store/apps/details?id=com.karata.unicohub
https://play.google.com/store/apps/details?id=com.pravegak.skribo
https://github.com/ayushsatyam146/OPUS-Backend

esoteric programming language designed and optimized to capture MIDI (Musical

Instrument Digital Interface) input from musical instruments and compile those

inputs with the OPUS compiler that I implemented in C++ to generate outputs.

Basically, it’s a programming language that allows users to write code with the

help of musical instruments (MIDI).

I have also done competitive programming for quite some time and I have also

qualified for ACM ICPC regionals 2020.

Tell us a bit about you:
I am a computer science engineering student passionate about building

out-of-the-box stuff. I am a firm believer in picking utility over technology in every

project. I like solving problems and try to be as efficient and practical as possible

with my solutions.

I like playing and listening to all kinds of music. I am currently trying my hands-on

learning guitar and piano. Apart from the web; Operating Systems, Compilers, and

System design are the fields that intrigue me the most.

Commitments:

I won’t be applying to any other organizations in GSoC, nor do I have any

internship or a full-time job during the GSoC period. I'll be giving 10-day long

semester exams somewhere from late June to early July, thus I'll only be able to

devote 2-3 hours per day during that period. I will be able to devote more than 6

to 8 hours every day except for the examination period.

