
FURY: GLTF Integration
GSoC 2022 Proposal

Organization: Python Software Foundation

Sub Organization: FURY

Project Length: Full-Time Project (350 Hours)

Contents

● About Me

● Code Contributions

● Project Information

● Stretch Goals

● Project Timeline

● Commitments and Availability

About Me

Personal Info

● Name: Shivam Sahu

● Country: India

● TimeZone: India (UTC +5:30 hours, EST +9:30)

● Github: Xtanion

● Linkedin: Shivam Anand

● Email: anandshivam54321@gmail.com

● Discord: xtanion#0280

University Info

● University: Indian Institute of Technology, Roorkee

● Major: Production and Industrial Engineering

● Current year: 2nd year

● Degree: Bachelor of Technology (2024 expected graduation)

Introduction

I am a second-year student at IIT Roorkee, majoring in Production and Industrial

Engineering (a 4-year course). I started programming in the first semester of my

college. I explored many python frameworks such as Numpy, Flask, TensorFlow,

Pytorch, PyGame, etc. I have worked on many projects in the field of Deep

Learning, Android App development & Game Development. One of my group

projects was to create an OCR to detect mathematical equations (under the

surveillance of the Physics and Astronomy Club, IITR).

https://github.com/xtanion
https://www.linkedin.com/in/xtanion/
mailto:anandshivam54321@gmail.com
https://discordapp.com/users/710394924461457468/

In order to understand computer graphics and OpenGL, I’ve gone through UCSC

university lectures and OpenGL tutorials. I read a bit of documentation on VTK.

I’ve read the documentation of FURY and tried to implement some

demos/tutorials. I find FURY fascinating as it’s very easy to use and versatile. I’m

currently learning about Shaders and Animations to add good contributions in

FURY.

Programming Skills

Programming Languages and Frameworks

● Fluent in Python, C, and Kotlin

● Moderately experienced in C++, Java, and SQL

● Experienced with various python frameworks (Numpy, Tensorflow,

PyGame).

Development Environment

● Ubuntu 21.10 (primarily used) dual booted with Windows 11

● Visual Studio Code and Pycharm as primary text editors

● Good grasp on the concepts of Git

● Moderately experienced with Blender & CAD software (AutoCAD).

Code Contributions

Below is the list of PRs that I’ve worked on FURY codebase -

https://www.youtube.com/channel/UCSynd9Z5RdIpKfvTCITV_8A/videos

● #520. Added rotation along the axes in Solar System Animation example

(merged)

An Enhancement PR. Previously the planets in the solar system example,

didn't have rotation along the axes. Added rotation relative to the earth’s

rotation period.

● #525. Implemented VtkBillboardtextActor (opened)

Implemented VtkOpenGlBillboardTextActor3d that always faces the

camera no matter the orientation. It aimed to resolve #465.

● #533. Sphere actor uses repeat_primitive by default (opened)

I modified prim_sphere to generate a sphere using phi and theta

parameters and sphere actor to use primitive by default. It aimed to resolve

#528.

● #547. Cone actor uses repeat_primitive by default (merged)

Implemented the prim_cone primitive. Modified cone actor to use it by

default and added unit tests for actor and primitives, respectively. It aimed

to resolve #529. It was a New Feature PR.

● #556. Updated code of viz_network_animated to use fury.utils (merged)

A documentation PR, In which I refreshed the code of demo

viz_network_animated to use fury.utils function. It resolves #553

● #559. Added simulation for Tesseract (merged)

I made a simulation of the Tesseract (4-D extension of a cube), rotated and

projected it into 3D so that it can be visualized by scene. Added tutorial for

the same. It was a documentation PR.

https://github.com/fury-gl/fury/pull/520
https://github.com/fury-gl/fury/pull/525
https://github.com/fury-gl/fury/issues/465
https://github.com/fury-gl/fury/pull/533
https://github.com/fury-gl/fury/issues/528
https://github.com/fury-gl/fury/pull/547
https://github.com/fury-gl/fury/issues/529
https://github.com/fury-gl/fury/pull/556
https://github.com/fury-gl/fury/issues/553
https://github.com/fury-gl/fury/pull/559

Some issues that I’ve raised -

● #526. Text Justification in VtkTextActor3D

Text justification of vtkTextActor3D seems to be working fine. There's a

_update_user_matrix() method in the text3d in fury; with or without this

method, the text actor's justifications were working in the same way

● The direction of actor produced by repeat_primitve is not the same as

vtkActor

direction parameters of a vtkActor and primitive work in different ways.

Hence, actors made from primitives get different orientations.

https://github.com/fury-gl/fury/pull/526
https://github.com/fury-gl/fury/issues/531#issuecomment-1038142712
https://github.com/fury-gl/fury/issues/531#issuecomment-1038142712

Project Information

Abstract

I will be working on integrating the glTF (Graphics Language Transmission Format)

file format to FURY. The glTF format minimizes the size of 3D assets and

unpacking time. The 3D data object can be directly used by any common graphics

APIs, so there won't be any need to decode or pre-process the 3D data. By the

completion, We shall be able to load/export and animate .gltf format.

As part of my Stretch Goals, I would like to work on expanding fury.io to integrate

with GLB formats as well.

Detailed Description

The glTF format is used to store 3D data in a suitable form for all runtime

applications. glTF allows us to store geometry data and scene data while keeping

the file size compact. Multiple 3D file formats have already been integrated into

FURY (OBJ, PLY, STL). However, glTF has its advantages of compact size and faster

load times.

Extracting data from glTF

The .gltf file contains scene structure as JSON. The scene data can be extracted

using the built-in json library in Python.

The JSON file contains the scene structure which is given by the hierarchy of

nodes that define the scene graph.

(glTF 2.0 structure, source: glTF 2.0 specification)

The Node contains transformations (Translation, Rotation, Scale) multiplied into

T*R*S to give the transformation matrix. It also contains Meshes, Camera, or Skin

(defines mesh transformations) instances.

Meshes have mesh.primitive, which contains references to the accessor, UV

texture coordinates, Normals, Vertex Colors, Weights, and Joints for skinning.

POSITION redirects us to the accessor; TEXCOORD_0 refers to UV coordinates for the first

set.

An accessor defines a method to parse data from buffers using bufferview

and bufferOffset.

(In this accessor, component type is 5123(Float), so each component is 4 bytes. Type is

SCALAR; hence the size of each element is 4 bytes (4*1).)

A bufferView represents a slice of data in one buffer. It contains buffer,

byteOffset & byteLength.

(this bufferView refers to the 0th buffer, the byteOffset is 0 and byteLength is 6. So, this

bufferView is referring to the 0-6th row in the buffers)

A buffer represents a block of raw binary data. Data is referred to as buffer by

uri. A uri may contain the path to an external .bin file or it could be a data URI

that is encoded directly into JSON. It can be decoded using the base64 module

and it’ll provide us with Vertices, Normals, Color Values & UV data.

Materials data is again present in JSON format. Materials are assigned to meshes.

(Example of material in glTF 2.0.)

Textures refer to images that contain uri to the image that we’ll be using as

texture. It can be extracted as a relative file path. We can create a function using

vtkTexture to map the texture to the actor, then using setTCoords (Set

Texture Coordinates) to map the UV coordinates that we got from the buffer. VTK

provides various ways to set textures, for eg: vtkProjectedTexture.

(Here, the texture source refers to the 0th object in images).

The material is applied after the texture is applied to the actor.

Translating data from glTF to FURY

Steps involved in visualizing a basic glTF (without animations) from the data:

1. Creating actors from the verts faces data (& if present, UV coordinates) that

we got from buffers. From the vertices and faces data, we’ll create a simple

primitive model and then convert it into an actor (We can use

utils.repeat_sources).

https://vtk.org/doc/nightly/html/classvtkProjectedTexture.html

2. Applying the node transformation matrices and updating vertices of the

actor.

3. Get the texture image using the io module. We can use vtkTexture(or

fury.texture) with UVTexture mapping to do so. Here are some

examples: example1, example2.

4. Identify the material type (eg: pbrMetallic) and set it to actors using

fury.material. Update actor.

5. Similarly the lights and camera can be set to FURY using the built-in

scene.camera module.

Exporting a simple FURY model as glTF:

1. Get the primitives data (vertices, triangles, color values, UV list, etc.) from

the scene and create nodes for each actor. Convert the primitive data into

binary and store them in buffers (convert to base-64 if the user wants to,

else store them in a separate .bin file).

2. Get Material and texture data, and store them into the mesh of the

respective node. Store the camera data into a node.

Animations

glTF supports Node transforms, Morph Targets weights, and skinned animations

via key-frame animations.

The animation data describes how the T, R & S properties of a node change over

time. An animations object consists of two elements: samplers and channels.

samplers refer to accessor objects, and it also defines how the data should be

interpolated into keyframes. animations.channel connects the sampler with

the node. We can get the target node from target.node and target.path

defines the animation property (T, R, or S).

https://kitware.github.io/vtk-examples/site/Cxx/Texture/ProjectedTexture/
http://scylardor.fr/2013/05/06/making-multi-texturing-work-with-vtk/

(Here, the 0th node is the target node and the animation type is rotation. The interpolation

type is LINEAR, input 2 and output 3 refer to time and animation accessors.)

In FURY, we don’t have a proper way to animate using keyframes. There’s a

separate GSoC project for the implementation of keyframe animations. However,

this could be an alternative approach to deal with the animations:

In FURY we can use timer_callbacks to update and animate the scene. We can

replicate the effect of keyframe animations with existing timer_callbacks

explained by the following pseudo-code:

num_frames = accessor['count'] # frame counts FPS

duration = 1 / num_frames # the refresh duration of timer_callback

duration = duration / n # dividing the duration into n (arbitrary)

parts

counter = itertools.count()

def timer_callback(_obj, _):

cnt = next(counter)

if cnt % n == 0:

tra_data = get_data_from_accessor(anim_acc, 'translation')

rot_data = get_data_from_buffer(anim_acc, 'rotation')

scl_data = get_data_from_accessor(anim_acc, 'scale')

else:

interp_type = sampler['interpolation']

interpolationValue = (currentTime - previousTime) /

(nextTime - previousTime)

if interp_type == 'STEP':

pass

elif interp_type == 'LINEAR':

tra_data, rot_data, scl_data = interp_lerp()

elif interp_type == 'CUBICSPLINE':

tra_data, rot_data, scl_data = interp_cubicspline()

from the above data we can calculate changes in node's

T, R, & S properties.

Morph Targets: Morphing is a process of changing from one model to another.

Morph Targets stores displacements or differences for certain mesh attribute that

is added to the original mesh at runtime to animate -

an object. We can determine the Rendered primitive position using the following

pseudo-code:

(Here, the position is computed at t=1.25 seconds. source: glTF 2.0 specifications)

From the animations, we get the data that affects weights for a given keyframe

and timestamp. Weights are interpolated linearly using that data and applied to

the morph target displacement. glTF currently supports morphing of vertex

position, normals & tangent data.

glTF 2.0 only supports animating node transforms, skinning, and Morph Targets

weights. It doesn’t have support for animating material colors and texture

transform matrices (source).

Implementing Skeletal Animation (Skinning)

Vertex Skinning allows the vertices of a mesh to be influenced by the bones of the

skeleton. Skinning glTF data is stored in nodes, meshes, and the skin object. I’ll be

implementing skeletal animations as part of glTF animations.

https://github.com/KhronosGroup/glTF-Tutorials/blob/master/gltfTutorial/gltfTutorial_018_MorphTargets.md#morph-targets
https://github.com/KhronosGroup/glTF/tree/9356622f7d7ace7b2ad5b838c37c1d0084b67969/specification/2.0#animations

A node refers to the index of the skin object. A skin object contains an array of

joints that defines the skeleton (bones) hierarchy, that is the joints that are to be

affected by the node transformation. Each vertex also contains a weights array

(range: [0, 1], contains up to 4 values) that defines the effect of the movement of

bones to the vertex. Skin object also gives us the reference to

inverseBindMatrices for each joint. Using the information, animated position can

be calculated as:

>>> Panimated = Pmesh * InverseBindMatrixjoint* MBM

>>> Panimated = Pmesh * SkinningMatrix (MBM = Transformation Matrix)

Applying the transformation matrix to the mesh in a loop will create an animation

effect.

Creating Demos & Adding Tests

After writing code for complete integration of glTF and adding Animations, I’ll add

demos to show how they can use the new glTF importer/exporter in FURY. I’ll also

add unit tests for the newly implemented glTF reader and writer.

Stretch Goals

Binary glTF (GLB) Integration

GLB is like glTF, but unlike glTF, it contains everything (JSON, buffers, and Image

data) as a single binary blob. It can still refer to external resources (e.g., Texture

for multiple objects can be referenced by uri).

After complete integration of glTF (load/ animate/ and adding demos for the

same), I’m planning to expand io with GLB format as well.

Project Timeline

Period Goals / Milestones

Community Bonding period
May 20, 2022 - June 12, 2022

Week 1-3
May 20 - June 12,

● Getting to know about the community, mentors,
and the admins.

● Reading up glTF standards and other related
projects (e.g., panda3D glTF).

● Discuss the goals for the mentioned features.
● Discuss the order of Implementation.
● Review and merge any pull requests that could

aid the project and otherwise.
● Read the binary data and convert it into NumPy

arrays.
● Parse the glTF file and create objects to save

them into memory.

Phase 1 Coding
June 13, 2022 - July 25, 2022

Week 4
June 13 - June 20

● Load meshes (without
textures/materials/animations) from glTF and
display them to the scene.

● Create functions for applying node
transformations.

https://github.com/Moguri/panda3d-gltf

Week 5
June 21 - June 28

● Load materials and texture data.
● Create a function to apply textures using

vtkTexture (or suggested by the mentor).

Week 6
June 29 - July 6

● Apply materials to the mesh using built-in
methods.

Week 7
July 7 - July 14

● Add lights, mentioned camera position.
● Fix any bugs in Importer.

Week 8, 9
July 15 - July 24

● Parse the animations data from buffers.
● Creating callback function to mimic the keyframe

animation.

Phase 1 Evaluation
July 25 - July 29

Week 10
July 25 - Aug 1

● Write functions for all supported interpolation
types. We can use scipy interpolation and
spatial transformations.

● Apply interpolation for intermediate frames.

Week 11
Aug 2 - Aug 9

● Create functions for simple node transformation
animations.

● Perform bug fixes

Week 12, 13
Aug 10 - Aug 25

● Start loading the morph data.
● Interpolate weights of morph targets on each

callback to perform morph animation.
● Update vertices of the mesh.

Week 14
Aug 26 - Sep 2

● Perform bug fixes in Morphing Animations
● Create bones hierarchy (bind pose) for the

skeletal animation.
● Assign vertices to bone indices and their weights.

Week 15
Sep 3 - Sep 10

● Load skinning information (inverseBindMatrices,
weights, etc).

Week 16, 17
Sep 10 - Sep 25

● Calculate transformation matrices for the
hierarchy of bones

● Calculate skinning matrices.
● Apply skinning matrix and weights to the vertices

Week 18
Sep 26 - Oct 3

● Apply skinning matrix and weights to the vertices
● Transform the vertices.

Week 19
Oct 4 - Oct 11

● Debug the skeletal animations code.
● Add unit tests for loading the glTF.

Week 20
Oct 12 - Oct 19

● Add unit tests for animations, morphs & textures.

Week 21
Oct 20 - Oct 27

● Work on stretch goals (if time permits).
● Try to integrate the .glb format into fury.io

Week 22, 23
Oct 28 - Nov 13

● Debug the code extensively for loading,
visualizing, and animation.

● Prepare tutorial/demos/videos for newly
implemented features.

Final Evaluations
Nov 14 - Nov 21

Commitments and Availability

1. My college End Term Examinations are from 22 April to 2 May &

College’s summer vacations will continue for the entire month of

May, June, till July 22. Therefore there won’t be any classes during the

First Coding Period & I’ll be able to invest at least 40-45 hrs a week.

2. My college will reopen on July 25. During this time, I may have offline

classes in the evening for 2-3 hours daily; during this time, I’ll be able

to work 40-45 hrs a week.

3. I have no plans of any personal vacations nor of any travel otherwise.

4. Typical working hours (in EST): 11:30 PM to 2:30 AM, 4:30 AM to 7:30

AM, 12:00 PM to 3:00 PM.

5. I’m willing to reschedule and re-plan the timings as per my mentor’s /

other team member’s availability/requirements.

6. I’m only applying to FURY in GSoC 2022.

