SOLUTIONS

PYTHON SOFTWARE FOUNDATION
Sub Org: EOS Design System

Project: User Story - Improvements and new features

By: Sundeep Chand

Contact Information:
- Timezone: UTC +5:30
- Country: India
- Gitlab username: SundeepChand
- Github username: SundeepChand
LinkedIn: sundeep-c-418862135

- University: Delhi Technological University
- Program: B.Tech in Computer Engineering
- Current Year: 2nd

Expected graduation date: August 2023

Code Contributions to EOS:

https://gitlab.com/SundeepChand
https://github.com/SundeepChand
https://www.linkedin.com/in/sundeep-c-418862135/
http://dtu.ac.in/

Contributions to eos-user-story:
- Merge requests
- Created issues

Contributions to eos-strapi:
- Merge requests

Contributions to eos-icon-picker:
- Merge requests

Project Background:

EOS is an open-source, and customizable Design System for front-end developers and
UX designers at SUSE and SMEs to efficiently deliver and implement industry-standard
practices that will help brands achieve consistency and success.

The EOS User Story project aims at providing a user-friendly and interactive platform for
users to sign in and request new icons, report bugs, etc for EOS Icons. The users can
track the progress of their issues, vote and comment on issues that are of interest to
them. The project admins can then review, resolve, close or assign a status to the
issues. It serves as an efficient feedback mechanism for organisations, which is
necessary for the development of different products of an organisation. The project is
totally reusable and can be used by any other organisation for their products.

Synopsis:

Most of the basic features of the EOS User Story project are developed but some
important features are yet to be implemented. I'm going to improve the project by
adding the following features:

1) Request Templates - This feature will enable the admins to configure custom
templates for certain products. This will provide users the guide to fill the story
details as well as speed up the review process of the stories.

2) Shareable Links for Stories - This feature will provide the users the ability to copy
the URL of a particular story with the single click of a button, which can then be
shared.

3) Searching for Stories - This will enable the user to search for stories by title.

4) Shareable Search results - This feature will generate unique links for each of the
search filters that are applied to the stories, so that the results can be shared
easily.

https://gitlab.com/SUSE-UIUX/eos-user-story/-/merge_requests?scope=all&utf8=%E2%9C%93&state=all&author_username=SundeepChand
https://gitlab.com/SUSE-UIUX/eos-user-story/-/issues?scope=all&utf8=%E2%9C%93&state=all&author_username=SundeepChand
https://gitlab.com/SUSE-UIUX/eos-strapi/-/merge_requests?scope=all&utf8=%E2%9C%93&state=all&author_username=SundeepChand
https://gitlab.com/SUSE-UIUX/eos-icon-picker/-/merge_requests?scope=all&utf8=%E2%9C%93&state=all&author_username=SundeepChand

5) OAuth Integration - Integrating OAuth Logln will streamline the user experience.

In addition to these features, | will also be working on adding unit, integration and
end-to-end tests to the project using Jest and Cypress. After implementing the tests |
will also integrate them to the Gitlab CI/CD Pipelines. This will eliminate the need for
manual testing of the future Pull Requests.

User Story Improvements:

1. Request templates:
(View video in GDrive) (View video in youtube)
(Link to eos-strapi branch) (Link to user-story branch)

This feature will provide the project admins the ability to configure custom request
templates for a product. This template will provide the user some hints about the
request format and would streamline & speedup the process of request reviews.

- Research done so far:

I've created a collection type User-Story-Template in strapi, which can be associated to
a product, by a one to many relationship. So basically a template can be used by many
products whereas a product can have a single template.

User Story Templates

There is no description

3 fields < Configure the view |
Template Rich text & 0

products Relation with Product &S o
Name Text & m

+ ADD ANOTHER FIELD TO THIS COLLECTION TYPE

Then templates can be configured in the strapi admin as shown in the image below:

https://drive.google.com/file/d/1bpJR3xOfxDHbOwbV4omT9-h3CtXY38JA/view?usp=sharing
https://youtu.be/bzOeFmQSukA
https://gitlab.com/SundeepChand/eos-strapi/-/tree/poc/templates
https://gitlab.com/SundeepChand/eos-user-story/-/tree/poc/templates

< SundeepChand + N EE

6048d63ee336f128609fc439 m “

APIID ; user-story-templates

Template Products (1)

i
[}

Add a title B 1 U abe > @ o Switch to preview

EQS Icons
[cha>New icon request</h4>
<p>Icon name: </p>

< Configure the view

<p>Icon description: </p>

® Edit the fields
<p>Please include some example images of the icon.</p>

Name

EOS Ieon Request Template

0
Since the template collection is a part of the product collection, the template for a
product can be fetched as shown below:
query {
products {
id

Name

user story template ({

Name

Template

This template content is updated in the frontend when a product is selected, by passing
the templateText as data prop to CKEditor.

2. Shareable Link for Stories:
(Link to user-story branch)

This feature will provide the users the ability to copy the URL of a particular story with
the single click of a button, which can then be shared.

- Research done so far:

I've placed the share button as shown in the image below inside the story page:

https://gitlab.com/SundeepChand/eos-user-story/-/tree/poc/share-link

v L e
: Ol 0 o o O

Under consideration Planned Designing Implementing Testing Deployed
Test story2
~ad 4
By: user1 r mm,’
|. Vote Fe
Testing.
Share Edit

The code to copy the current URL is as shown below:

A

me="btn btn-default’
(O = {
C tempInput document.crea
tempInput. window.
document.t
tempInput.
document d('copy

)

document.t

And when user clicks on the share button, the current URL is copied to the clipboard
(instead of the alert, we can show a nice modal):

USER localhost:3000 says e
STORY @1 Link copied to clipboard!
- N N
Under consideration Planned Designing Implementing Testing Deployed
Test story2

~ad |
By: user1 r am,’

I. Vote ¥ [

Testing

a3 5
Share Edit
N)

Comments

I’'m planning to put the share button on the Home page as well. Here is a design of the
Ul (Link to design):

o Under consideration 0 Planned Z Dssigning <> Implementing 6 Testing m Deployed
Product v Al Categories v 2l SortBy v Most Voted
-
- Testing new story s Y Crestedty Category @ o
I. M rcting new story o7 ¢ Mmharshita User_experience =

-
4 Created by Catego Link copied to clipboard |

- Testing story creation 4
-
|.' ALl Testing description S usert Docl }

- Checking for links
|. ALICN Checking for links : https://www.google.comy/testing for linksheyhey

~d
T W!
[1]

=]

4 Created by Category
mharshita Performance

me

3. Enable Searching of Stories:
(View video in GDrive) (View video in youtube) (Link to user-story branch)

This feature is going to enable the users to search for stories by title.

- Research done so far:

In order to implement the search, | used the default “where” alongwith “field_contains”
filter provided by strapi. My implementation matches whether the story title contains the
search text & returns a result based on that. Here is the code to fetch stories containing
someText in their title:

https://www.figma.com/file/YjkvcdH2ZekAVb7Ys6phLz/Home-with-share?node-id=0%3A1
https://drive.google.com/file/d/1pbsm-MEma5z9tDbZJfHqjzfcQqHMKpYz/view?usp=sharing
https://youtu.be/VsFX67VIO3A
https://gitlab.com/SundeepChand/eos-user-story/-/tree/poc/search

I've used the results from this query to implement the search. The code for handling
pagination was already written, so implementing this will be a little straightforward.

° Under consideration o Planned 2 Designing <> Implementing @ Testing E[Deployed
X story Product v Product1 Categories v Al SortBy v Most Voted
. Y
St
Test StOI‘y‘Z “mm J Createdby Category @ 0
r & s
Testing Fo user1 Accessibility E 0

< Prev 1 Next >

But | think implementing a search based on matching the title along with description,
would require a custom search endpoint to be implemented in strapi as I’'m unable to
find a way of applying “OR” operation through default strapi graphql while querying the
backend.

4. Shareable search result links:

In order to improve the search functionality further, I'm looking at ways to make the
search results shareable. The approach I'm currently trying is to update the Frontend
route with query parameters when a search filter is applied. This will give a unique link
for each combination of search filters which can be shared easily. So opening a link like
‘http://localhost:3000/?product=EOS%20Ilcons’ would open the product filter set to ‘EOS
Icons’ by default. Currently I've implemented this for the product field (shown in the

screenshot below). I've used an npm package gquery-string to parse the query string
& update the frontend state variables accordingly to display the results.

Home | EOS User story

< C @ localhost:30(

o Under consideration Q Planned # Designing <2 Implementing @ Testing _@_ Deployed
Q. search Product v EOSlcons Categories v All SortBy v Most Vated

-
Add brand icons to EOS icons - ‘ | Createdby Category ® 2
F Em,_
userl Performance 5
EOS icons need brand icons. Fw E f

> 4
n Robot Icon mE j4 Createdby Category
N,
; ; ; user1 User_Interface
|. AN New icon requesticon name:Robot Iconlcon description: A robot iconPlease include. Fa

Sl

Ju 0

5. Integrating OAuth SignUp/Login:

(View video in GDrive) (View video in youtube)
(Link to eos-user-story branch) (Link to eos-strapi-branch)

Integrating OAuth will help provide easy & quick Login options to users. This will make
the website more accessible and will make the UX frictionless.

- Research done so far:
| integrated OAuth using Google provider. The link to the demo of that is provided

above. Integrating the Google OAuth provider requires the project to be registered in
Google Cloud console, and after the setup we get an OAuth Client ID & a Client Secret
that are used to communicate with the OAuth provider.

https://www.npmjs.com/package/query-string
https://drive.google.com/file/d/12icIgDJxPO4WWrxv4KwBwVbujwf8OiNZ/view?usp=sharing
https://youtu.be/b3xJ05q8vK0
https://gitlab.com/SundeepChand/eos-user-story/-/tree/poc/auth
https://gitlab.com/SundeepChand/eos-strapi/-/tree/poc/auth

& EOS-User-Story v Q Search products and resources

& Client ID for Web application ¥ DOWNLOAD JSON C' RESET SECRET W DELETE
ame ClientID I
perstonpes]
The name of your OAuth 2.0 client. This name is only used to identify the client in the Client secret .

console and will not be shown to end users. _
Creation date March 29, 2021 at 12:06:06 AM GMT+5

The domains of the URIs you add below will be automatically added to
your QAuth consent screen as authorized domains.

Authorized JavaScript origins @

For use with requests from a browser

URIs

http://lecalhost:1337

+ ADD URI

Authorized redirect URIs @

For use with requests from a web server

URIs

http://lecalhost:1337/connect/google/callback

-+ ADD URI

- J

Integrating other OAuth providers would require a similar process of registering the
application in their Developer consoles and setting up the Client ID & Client Secret.

| am planning to integrate Google, Github, Twitter & Facebook OAuth providers as part
of this project.

6. Improving test coverage:
(View video in GDrive) (View video in Youtube)

(Link to eos-user-story branch) (Link to eos-strapi branch)

As the application grows in size, it becomes necessary to perform checks before putting
it to production/merging any patch. So I'll be adding more unit/end-to-end tests using
Jest/Cypress testing libraries respectively.

The tests can be divided into 3 categories:
a) End-to-end tests - They check the entire flow of a feature in the application.
b) Integration tests - They check how a unit integrates with other components

https://drive.google.com/file/d/1BUotfcLDnksvqk2DWa85GDNpYAPDVlX4/view?usp=sharing
https://youtu.be/pSB2dUo8gY4
https://gitlab.com/SundeepChand/eos-user-story/-/tree/poc/e2e-tests
https://gitlab.com/SundeepChand/eos-strapi/-/tree/poc/tests

c) Unit tests - They check the individual standalone components of the codebase.

The tests mentioned above are in the decreasing order of the resources they need to
run. So an end-to-end test will take the most resources (as well as time) while a unit test
will take the least resources to run in the CI pipeline. Hence having a large number of
unit tests and very few end-to-end tests is desirable.

- Research done so far:

a) Setting up a test environment for end-to-end tests:
Currently I'm planning to connect to a separate MongoDB instance in order to run the

end-to-end tests, so that it does not affect the data in the production/development
database. Here is the configuration to connect to a new database:

r: "mongoose",

: env("EOS_DATABASE_DB_TEST"),
nv ("EOS_DATABASE_URI_TEST"),

« I
SH
sl: true,

; “onnect : 'default’,
...configType[env('NODE_ENV') === 'test' |? 'test' : (env.bool('WITH DOCKER') ? 'with' : 'without')]

And here is the command to run strapi in test mode:
> Debug

"strapi develop",
"strapi start”,
"strapi build",

: “"strapi”,
"cross-env NODE_ENV=test strapi develop"|

It uses the cross-env npm package to set the NODE ENV environment variable’s
value.

b) Writing tests:

Given below are the specs that I’'m planning right now for implementing the tests. Most
of these tests can be implemented as unit/integration tests. And certain user-workflows
in these specs can be implemented as end-to-end tests.

| will modify these if | find a better workflow, or based on any feedback that | receive
from my mentors:

User is not logged in User is logged in
Navbar: Navbar:
- Displays only EOS Logo & a sign - Displays EOS Logo, new story
in button button, notification & myAccount
- Logo should link to / - New story button links to /newStory
- Sign in button should link to /login - Clicking on notifications shows
unread notifications & has link to
Inotifications

- My account displays username,
email & has links to /myStories &
/myProfile

- Has logout button

Homepage (/): Homepage (/):
Stories are loaded properly in - Same as not logged in case
different sections - User should be able to
- Stories can be filtered. vote/un-vote stories

- Users cannot vote stories

- Clicking on a story should open the
story page

- Clicking on the author should open
author’s profile

- Pagination should load more

stories
Reglster page (/register): Register page (/register):
Should have relevant fields - Should redirect to home

- Error messages are displayed
correctly when some field is empty.

- Terms & conditions should link to
/policies

https://www.npmjs.com/package/cross-env

- ‘Existing user’ should link to /login
- User can register

Logln page (/login):

Should have relevant fields

- Error messages are displayed
correctly when some field is empty.

- ‘Forgot password” links to
[forgotPassword

- Has link to register page

- Useris able to login

Login page (/login):
- Should redirect to home

Forgot Password (/forgotPassword):
- Should have relevant fields
- Error messages are displayed
correctly when some field is empty.
- User is able to submit a request.

Forgot Password (/forgotPassword):
- Should redirect to home

NewStoryPage (/newStory):
- Should display login form

NewStoryPage (/newStory):
Should display new story form
- User should be able to create a
new story
- The new story appears in home

page

Story Page (/story/:storyld):
Should display story status
- Story title, description is displayed
- Story comments are displayed
- Replies to comments are visible

Story Page (/story/:storyld):
Same as not logged in
- Should display edit button, if the
author is current user
- User is able to update the story
- User should be able to comment
on the story & reply to comments

My Stories Page (/myStories):
- Should display login form

My Stories Page (/myStories):

- Should display the stories created
by the user & the stories the user
follows.

- Should link to the stories

My Profile Page (/myProfile):
- Should display login form

My Profile Page (/myProfile):
- Should display user info
- User should be able to edit their
info
- Should link to /changePassword

User Profile Page (/profile/:profileld):
- Should display user info

User Profile Page (/profile/:profileld):
- Same as not logged in

- User info cannot be edited
- Stories can be filtered
Notifications (/notifications): Notifications (/notifications):
- Should display login form - Should display the notifications
Change Password (/changePassword): Change Password (/changePassword):
- Should display login form - Should display relevant fields
- Should display error messages
properly
- User should be able to change
password
Policies (/policies): Policies (/policies):
- Should display the privacy policy - Should display the privacy policy
Footer Footer
- Should link to /policies - Should link to /policies
Sign out:
- Should sign out the user, clear
localstorage & cookies

- A large number of them, like testing the links, the content on the page, etc can be
implemented as unit tests for individual react components (using Jest and
react-testing-library).

- Certain specs like users can vote/un-vote stories are suitable candidates for
integration tests.

- And certain mission critical user work-flows like user can login, user can change
password, etc can be tested using end-to-end tests.

a) I've implemented the specs for the navbar (as unit test) using Jest. Given below
is a part of the test where | am testing the state of the navbar when the user is
logged in. For this | have used a package called jest-localstorage-mock to
mock the localstorage for testing. We can use this package to test for other
components as well, that rely on localStorage & sessionStorage:

- Navigation.spec.js:

describe ('Navigation when logged in', () => {
let

const mockHandler = .fn ()

const TEST USERNAME = 'user'
const TEST EMAIL = 'test@gmail.com'

https://www.npmjs.com/package/jest-localstorage-mock

beforeAll (() => {
localStorage.setItem('username', TEST USERNAME)
localStorage.setItem('email', TEST EMAIL)

})

beforeEach(() => {
const initialState =
auth: true,
errorCode: null

}

component = render (
<Context.Provider value={{ state: initialState, dispatch:
mockHandler }}>
<Navigation />
</Context.Provider>

})

test('displays username & email by fetching from localstorage', () => {
expect (component.container) . toHaveTextContent (TEST USERNAME)
expect (component.container) . toHaveTextContent (TEST EMAIL)

})

The image below shows the results after running the entire Navigation.spec.js.

/F/GS0C/E0S_Proof_of_concept/eos-user-stor

y (poc/unit-t
$ npm test

> e0s-issue-request@0.1.0 test F:\GSOC\EOS_Proof_of_concepth\eos-user-story
> react-scripts test

PASS src/components/Navigation.spec.js

Navigation when not logged in
shows EOS Logo that Tinks to Home (25ms)
shows Sign In button (7ms)

Navigation when logged in

| displays username & email by fetching from localstorage (10ms)

shows New Story button (12ms)
shows notifications button (6ms)
shows my account button (5ms)

1 passed, 1 total
6 passed, 6 total
total
ime : 2.463s
Ran all test suites related to changed files.

Currently I've also implemented the Homepage spec using Cypress. However, in order
to reduce the size of end-to-end tests this can be divided into smaller unit tests using
Jest as there are components that can be tested in isolation.

- home.spec.js:

describe ('Home page', function () {
before ('Open app', function () {
cy.visit('/")
b

it('loads stories', function () {
cy.get('.story:nth-child(l) > .stories-content > h3',6 {
10000

}) .contains('This is a test story')

})

it ('does not allow user to vote', function () {
cy.get('.votes-count')
.invoke ('text')
.then (() => {
cy.get('.vote-button') .click({
10000
b

cy.get('.votes-count')
.invoke ('text')
.then (() => {
expect () - .equal (

})

})

it('links to story author', function () {
cy.get (' [data-cy=author-1link') .should (
'have.attr',
'href',
'/profile/605a30f6a4aal6137c4254a5"'

it('loads stories in different sections', function () {
const buttonCount = 6
for (let = 2; <= buttonCount; i++) {
cy.get(.roadmap > button:nth-child(${i}) ") .click({
: 10000
3]
cy.contains('No stories')
}
3]

it ('should open stories page when user clicks on a story', function () {

cy.visit('/', {
: 10000

})
cy.get('.story:nth-child(l) > .stories-content')

.click()

.click()

.url ()

.should('equal'’,
'http://localhost:3000/story/605a35e2a4aal6137c4254a7"')

})
1)

Here is the demo of these tests running (links given above as well):
(Demo video in GDrive) (View video in Youtube)

TImeline:

Community Bonding (May 17 - June 7):

During this period | will get familiar with the community members and understand the
workflow at EOS. | will interact with my mentor and decide the workflow for the project
and refine the features presented(if any) in this proposal after discussing with the
mentors. | will also fix any existing issues in the application, that might be a roadblock
for the project. As well as | will learn in more detail about Cypress best practices and
Docker during this period, so that | can enhance the testing part.

Outcomes:

https://drive.google.com/file/d/1BUotfcLDnksvqk2DWa85GDNpYAPDVlX4/view?usp=sharing
https://youtu.be/pSB2dUo8gY4

- Learn more about EOS.
- Finalise the project roadmap.
- Improve my knowledge of Cypress best practices & Docker.

Week-1 (June 7 - June 13):
| will work on implementing Shareable Links for Stories. After this | will also start
working on the initial setup for Searching of Stories.

Outcomes:
- Shareable Links for Stories is implemented.
- Start working on Searching of Stories.

Week-2 (June 14 - June 20):

| will finish implementing searching of stories. | will also work on implementing sharing
of search/filter results. | will also work on the initial setup for implementing request
templates.

Qutcomes:
- Finish implementation of search and shareable search results.
- Initial setup for implementing request templates.

Week-3 (June 21 - June 27):
| will work on integrating request templates with the Front end. | will also work on the
initial setup for OAuth Integration.

Outcomes:
- Finish implementation of Request Templates feature.
- Initial setup for OAuth integration.

Week-4 (June 28 - July 4):
| will work on finishing OAuth Integration this week. This week | will also start working on
the unit/integration tests using Jest and React testing library.

Outcomes:
- Finish OAuth Integration.
- Implemented unit/integration tests for certain components.

Week-5 (July 5 - July 11):
| will continue working on writing tests this week.

Outcomes:
- Finish a majority of unit/integration tests.

Week-6 (July 12 - July 18) (1st review from July 12 - July 16):

This is the time for first evaluations. This week | will take the feedback from my mentor
& work on improvements (if any). | will further work on implementing the end-to-end
tests this week.

Outcomes:
- Merging of the patches to the main tree.
- Finish unit/integration tests.
- Initial work on implementing the end-to-end tests.

Week-7 (July 19 - July 25):
This week | will finish writing the end-to-end tests in Cypress.

Qutcomes:
- Completion of the end-to-end tests.

Week-8 (July 26 - August 1):
This week | will focus on getting the tests reviewed, and get them merged with the main
branch. | will also make changes to the documentation during this week.

Outcomes:
- Merging of tests to the main branch.
- Improved documentation.

Week-9 & Week-10 (August 2 - August 15):

| will work on deploying the tests to the Gitlab CI/CD Pipeline, so that the tests are run
every time a commit is pushed.

As well as | am using this time as a buffer period, to avoid any delays arising out of any
unforeseeable circumstances.

If everything goes as per schedule, | will be working on fixing existing issues and
implementing feature enhancements during these weeks.

Outcomes:
- Tests deployed to CI/CD pipelines.
- Fixing existing issues.

Final Evaluations (August 16 - August 31)

Previous Experience:

| started learning web development a little before the start of my first year at college. By
the second semester of my college | started contributing to some of my college societies
as a web developer. My role involved developing the sites of the societies along with my
team-mates.

I've also created a couple of full-stack web projects which can be found on my Github. |
started contributing to p5.js-web-editor since my second year, before | started
contributing to EOS. Here is a link to all the Pull Requests that | had made to the
p5.js-web-editor project. | have also participated in some hackathons where | worked on
creating full-stack web apps.

| am also currently a part of the Underwater Robotics Team of our college where | have
worked on the computer vision part. However, it would not affect my GSOC project as
the workload is not high in the team.

About Me:

I’'m a second year Computer Engineering student at Delhi Technological University, New
Delhi. I'm enthusiastic about learning new technologies, and I'm interested in Web
Development in particular. | also code in C++/Python and | used to participate in
competitive programming as well. However | did not enjoy doing it, and continued
learning web development. | started contributing to open source since August last year.
And | really enjoyed doing it as | was applying my skills to real world projects.
Contributing to open-source also helped me feel confident about my development skills.
So now | would love to contribute to an open-source project in a more focussed way
under the guidance of professional mentors who have considerable experience in the
field, and this project is the best opportunity for the same. | am a keen learner and never
miss my deadline, so | will strictly adhere to my timeline.

Apart from coding | also enjoy going on cycling trips with my friends and listening to
music. | also play video games during my free time.

https://github.com/processing/p5.js-web-editor/pulls?q=is%3Apr+involves%3ASundeepChand+sort%3Acomments-desc
http://dtu.ac.in/

Stretch Goals:
(These ideas can be implemented once the above goals are accomplished)

Integration of EOS User Story with Slack workspace:

Taking the example of EOS-Icons, we can integrate the website to our slack workspace
so that whenever any new story is posted to the website, it is also updated on the
internal Slack workspace. Similarly any other organisations who choose to use EOS
User Story may integrate their Slack workspace just by changing an environment
variable. This will enable the entire internal team to stay updated about the things being
posted to the website and would ensure quick responses.

For implementing this we can use the incoming-webhook Slack app. Whenever a
new story is created we can make a POST request from strapi-server to this Slack app
and thus the message will be posted. | will work on implementing this once the above
mentioned features are implemented.

https://slack.com/apps/A0F7XDUAZ-incoming-webhooks

