
Google Summer of Code ‘22

LPython: Implementing a Very
Fast Parser
4th April 2022

Akshansh Bhatt



About Me

The Student

Name: Akshansh Bhatt

E-Mail: qaz.akshansh@gmail.com

GitHub Profile: akshanshbhatt

Timezone: IST (UTC+05:30)

The Institute

University: Birla Institute of Technology and Science (BITS), Pilani

Major: Physics, Electronics and Instrumentation Eng. (Dual Major)

Duration of Degree: Five Years

Current Year: Third

Degree: Master of Science (M.Sc.) and Bachelor of Engineering (B.E.)

Programming Background

I use macOS as my operating system (Macbook Air with Apple Silicon M1),

Visual Studio Code as my primary editor and debugger, and iTerm2 with zsh as

my primary terminal emulator. Although for considerably large projects, I

1

mailto:akshansh@tuta.io
http://www.github.com/akshanshbhatt


often switch to Neovim for speed. I am familiar with the git and Github

workflow.

I have contributed to numerous big projects in the past couple of years, not to

mention that most have been in the Open Source domain. Last year, I was part

of SymPy’s GSoC developer team. I am currently the 43rd highest contributor,

to SymPy’s codebase, of all time and also an active member of the SymPy dev

team, helping out new contributors make their first contribution.

You can look at my final report from last year over here. I also encourage you

to check the weekly progress blog from last year, in which I have provided

every small detail regarding my advancement in the project I chose.

Python is my favorite language due to its simple syntax, usage in many

domains, and a vast community of awesome developers. It’s simple yet so

powerful. Apart from Python, I also code in C/C++ and JavaScript (but

Python’s the OG).

My Contributions

These are some of my contributions to LPython-

Merged Pull Requests

● #245: Add numpy to virtual env package list

● #353: Create environment.yml file

● #363: Fix the dedent token generation in new tokenizer

● #400: [Parser] Implement parsing rules for functions

Issues Closed

2

https://user-images.githubusercontent.com/53227127/129947040-e7385c81-0d43-45a9-8d87-c688dae30585.png
https://user-images.githubusercontent.com/53227127/129947040-e7385c81-0d43-45a9-8d87-c688dae30585.png
https://github.com/akshanshbhatt/GSoC-2021-Final-Report
https://gsoc-blog.akshansh.me/
https://github.com/lcompilers/lpython/pull/245
https://github.com/lcompilers/lpython/pull/353
https://github.com/lcompilers/lpython/pull/363
https://github.com/lcompilers/lpython/pull/400


● #350: Setup environment.yml for creating a development Conda

environment

● #358: New tokenizer fails when there are multiple indentations

Issues Raised

● #243: Issue with creating autogenerated files

● #244: Integration tests fail

● #266: Anomalous behavior of static types

● #358: New tokenizer fails when there are multiple indentations

● #392: The new parser generates unwanted AST nodes

Note: There must be more PRs by the time my mentors will review my application,

so I am providing the GitHub link to all my PRs.

3

https://github.com/lcompilers/lpython/issues/350
https://github.com/lcompilers/lpython/issues/358
https://github.com/lcompilers/lpython/issues/243
https://github.com/lcompilers/lpython/issues/244
https://github.com/lcompilers/lpython/issues/266
https://github.com/lcompilers/lpython/issues/358
https://github.com/lcompilers/lpython/issues/392
https://github.com/lcompilers/lpython/pulls?q=is%3Apr+author%3Aakshanshbhatt+is%3Aclosed


The Project

In this section, I will explain my project details. I expect this structure to be

considerably improved under the guidance of my mentors.

Understanding the LPython Compiler

4



The diagram above depicts the proposed implementation of the LPython

compiler. LPython compiler works in three different phases, which we can also

reduce to two significant phases if we don’t require code optimizations - the

Frontend and the Backend.

The frontend is responsible for optimizing the high-level code into a tree

structure before it is fed to the backend to generate machine-level code by

traversing the tree. We can regenerate the source code from any

intermediate step in the frontend pipeline. The frontend mainly deals with the

syntactic and semantic analysis of the source code. We will discuss a more

detailed analysis of the frontend and its components in the next section.

On the other hand, the backend's job is to traverse the nodes of the

(presumably optimized) IR code (Abstract Semantic Representation in

LPython’s case) to the Target code (often machine level). The frontend deals

with syntax, whereas the backend mainly handles low-level code generation

and hardware-specific optimizations. LPython’s backend can generate a wide

variety of target code depending upon the need, thanks to the power of the

LLVM. If the source code is generated till the LLVM IR level, LLVM can convert

it to x86/ARM assembly or C++ equivalent very efficiently.

Frontend
Since my project mainly involves improving the frontend, I will discuss the

essential components of the frontend in detail.

Tokenizer

Tokenization is the first step in the compilation process. The tokenizer

converts the stream of characters of the source file to a stream of tokens.

5



Tokens are the most fundamental unit of the programming language. A token

can be an identifier, separator, keyword, operator, literal, delimiter, or

comment. The tokenizer further identifies the token type and passes tokens

one at a time to the next stage of the compiler, that is, the parser. The errors

caught in this part of the compilation process are due to incomplete syntax in

the source file. For example, if a user forgets to open a parenthesis and forgets

to close it later or starts a string with a single quote but closes it with a double

quote. The tokenizer has no idea about the context of the code, so if someone

mistakenly made some typo in a keyword, it will not be logged as an error to

the user during this phase of compilation.

At present, everything up to AST generation is abstracted by the CPython’s

AST module. This includes Tokenization, Parsing, and finally, generation of

AST. It is convenient but very slow. The key reason for such a slow frontend is

writing and reading operations on a file (files are stored in the disk and not in

the immediate memory, requiring more machine cycles to access). Not to

mention that CPython’s interpreter is already quite slow. Fast compilation

speed is one of the key aims of LPython; therefore, we cannot compromise on

it.

For this very reason, Ondrej decided to implement our tokenizer and parser

from scratch. This would allow us to control every aspect of the compilation

process and not compromise on its swiftness. Another advantage of this

approach is that we can also expand the frontend to include features specific

to LPython in the future.

The new tokenizer is not very mature at this point. It has been directly taken

from the LFortran’s codebase with some modifications. Re2c has been used to

find patterns in the source code (using regular expressions) and convert them

to its equivalent C++ code. This C++ code finally generates the tokens.

6

https://github.com/lcompilers/lpython/blob/f81caecd9897ac38cc6c08eb8ca22793cbb1dddc/src/runtime/lpython_parser.py
https://github.com/lcompilers/lpython/blob/f81caecd9897ac38cc6c08eb8ca22793cbb1dddc/src/runtime/lpython_parser.py
https://github.com/lcompilers/lpython/pull/310
https://gitlab.com/lfortran/lfortran/-/blob/master/src/lfortran/parser/tokenizer.re
https://gitlab.com/lfortran/lfortran/-/blob/master/src/lfortran/parser/tokenizer.re
https://re2c.org/manual/manual_c.html


#260, #310, #312, #313, #314, #341 and most importantly #298 have

relevant discussions/code changes related to the new tokenizer. I have

formulated these points by taking information from these PRs, issues, Zulip

chat discussions, and the Python documentation page. Here is my proposed

plan to improve the tokenizer -

1. As tokenization is crucial in the compilation process, testing it

thoroughly is an essential task. Ondrej mentioned in this comment that

initially, our tokenizer does not have to be perfect. However, as we

progress further, it is necessary to lessen the difference in the tokens

generated by ours and the CPython’s tokenizer. We can start testing

smaller files first and then move to large files of renowned codebases

and check for the difference in the tokens generated by both the

tokenizers. Even if the tokens generated are not exactly the same, the

difference should be such that later stages of compilation are not

affected.

2. The new tokenizer does not log syntax errors when it should. For

instance, I opened a square bracket but forgot to close it later in the

program (example below). It is the tokenizer's job to throw a syntax

error here. The CPython tokenizer caught this error, but the new re2c

tokenizer didn't. The compiler should log errors where it is supposed to.

Catching and logging errors in the later stage of compilation can cause

issues. Testing these errors is also part of my proposed plan.

❯ cat examples/test_1.py #Sample Code

def main():

a = [1, 2, 3, 4, 5

print(a)

❯ python -m tokenize examples/test_1.py #CPython logs

7

https://github.com/lcompilers/lpython/pull/260
https://github.com/lcompilers/lpython/pull/310
https://github.com/lcompilers/lpython/pull/312
https://github.com/lcompilers/lpython/pull/313
https://github.com/lcompilers/lpython/pull/314
https://github.com/lcompilers/lpython/pull/341
https://github.com/lcompilers/lpython/issues/298
https://github.com/lcompilers/lpython/pull/310#issuecomment-1086155075


errors

examples/test_1.py:4:0: error: EOF in multi-line

statement

❯ src/bin/lpython --show-tokens examples/test_1.py #No

error raised

(KEYWORD "def") 0:2

(TOKEN "identifier" main) 4:7

(TOKEN "(") 8:8

(TOKEN ")") 9:9

(TOKEN ":") 10:10

(NEWLINE) 11:11

(TOKEN "indent") 12:15

(TOKEN "identifier" a) 16:16

(TOKEN "=") 18:18

(TOKEN "[") 20:20

(TOKEN "integer" 1) 21:21

(TOKEN ",") 22:22

(TOKEN "integer" 2) 24:24

(TOKEN ",") 25:25

(TOKEN "integer" 3) 27:27

(TOKEN ",") 28:28

(TOKEN "integer" 4) 30:30

(TOKEN ",") 31:31

(TOKEN "integer" 5) 33:33

(NEWLINE) 34:34

(TOKEN "identifier" print) 39:43

(TOKEN "(") 44:44

(TOKEN "identifier" a) 45:45

(TOKEN ")") 46:46

(EOF) 47:47

3. Another major task is to ensure that there is no compromise in the

tokenization speed by benchmarking it on large text files. Re2c has been

8

https://re2c.org/benchmarks/benchmarks.html


known for its insanely fast run time, so there should be a major speed

boost compared to the prior tokenization method, but will it be faster

than the regular CPython tokenizer? We can know the quantitative

results only when we benchmark them.

Parser

After successful tokenization of the source code, the stream of tokens is

passed to the next compilation step, parsing, carried out by a parser. In

compiler architecture, a parser is a program that takes a stream of tokens as

input and builds a data structure. In the case of LPython, this data structure is

an AST (Abstract Syntax Tree). As discussed earlier, everything up to the AST

generation is abstracted by the CPython AST module, which we plan to

change by incorporating our new parser into the codebase.

CPython and LPython have different approaches to the parsing process and

have different parser types. Generated using Bison, our parser will be an LR

parser (employing LALR(1) parser tables). These parsers fall under a different

class of parser (bottom-up parsers) compared to the current CPython parser,

which is a PEG parser (these parsers are classified as Top-Down

recursive-descent parsers, which is an entirely different class of parsers).

PEG-based parsers work using backtracking algorithms. They try rules of

parsing and backtrack when they don't match. Due to this reason, they are

generally slower than the LALR-based parsers. Though PEG-based parsers

might be slow, they are more robust than alternatives.

Before Python 3.9, CPython’s parser was a LL(1)- based parser (also a

Top-Down class of parser). I will not go into the details behind this transition,

but you can read this if you are interested in learning more. All this

information might seem too much, but it is essential to get a glimpse of all the

9

https://re2c.org/benchmarks/benchmarks.html
https://peps.python.org/pep-0617/


different approaches before finalizing to implement our own. For instance, we

are using Bison for our parser program generation, but CPython’s core

development team stays skeptical of its usage and criticizes it (in the same

PEP). If our current approach goes wrong or is way too complex to keep track

of, a backup plan could be to use the current CPython Parser. Pegen is the

official PEG parser generator used in CPython. It is maintained by the

members of CPython’s steering team. We can build CPython’s parser directly

using the peg_generator tool in the official CPython repository, which uses

pegen to generate the parser. We just have to run a simple build command to

make it work. Maybe, in the future, we can add both of these parsers and give

a choice to the user for the parser he wants to use for compilation as a CLI

argument.

LPython’s parser is non-functional at this moment. PR #337 added the initial

parser files to the codebase, but there has been no significant progress from

this point onwards. Here is my proposed plan for implementing the

Bison-based parser -

1. Reviewing and modifying the grammar rules: The grammar rules

specified in the LPython’s parser are not complete yet. I have been

taking the CPython’s syntax grammar as the reference for the grammar

rules, and my first goal will be to match the grammar rules and apply

them to the LPython’s parser.

2. Testing and Documenting the Parser: The final AST produced by the

parser should be equivalent to the one produced by CPythons’s AST

module. We can automate the testing for AST in the test suite. Proper

testing for syntax errors during the parsing phase is also essential. Most

people find parsers very perplexing, making them hesitant to contribute

to them. I will be adequately documenting the source files of the parser

10

https://peps.python.org/pep-0617/#rejected-alternatives
https://github.com/we-like-parsers/pegen
https://github.com/we-like-parsers/pegen_experiments
https://github.com/python/cpython/tree/main/Tools/peg_generator
https://github.com/lcompilers/lpython/pull/337
https://github.com/python/cpython/blob/755be9b1505af591b9f2ee424a6525b6c2b65ce9/Grammar/python.gram


generator so that even beginners can easily contribute to it. Apart from

the regular documentation, I will also maintain a wiki page for essential

parser-related information that I’ll learn from contributing.

3. Logging Proper Error Messages during Parsing: The objective of an

error handler in a parser is to recover a syntax error. It plays a pivotal

role in modern resilient parsers (like that of CPython), especially to be

able to produce a valid AST even with syntax errors and provide proper

and meaningful error messages. Bison has a very rich error handling

support, and error messages can be specified with the grammar rules in

the yy file. With the power of Bison, we can log meaningful error

messages which will be at par, if not better, than the CPython parser.

4. Benchmarking the Parser: There have been some initial efforts to

benchmark the parser. PR #359 aims to implement a parser benchmark

for the new parser based on the description provided in #344. There

can be better approaches to benchmarking the parser than this, but we

can see this as a good initial step.

5. Generate AST nodes directly: As pointed out by Ondrej in this

comment, we can explore the documentation of Bison to generate the

actions of the parser automatically. It will generate AST nodes for most

of the cases, and we can do it manually for the left out cases. It has been

implemented in LFortran for macros and seems to work fine.

11

https://github.com/lcompilers/lpython/pull/359
https://github.com/lcompilers/lpython/issues/344
https://github.com/lcompilers/lpython/issues/298#issuecomment-1089478389
https://github.com/lcompilers/lpython/issues/298#issuecomment-1089478389


Timeline
Application Review Phase

● Since most of the code of my project will be written in C++, the first

thing I plan to do during this phase is to brush up on my C/C++ skills. I

plan to read about the best practices used in the industry so that my

code is not vulnerable. Naive C/C++ code is infamous for memory leaks,

and I don't want any stability issues later in the codebase.

● Open more PRs, report any issues I find, and continue contributing to

the project in general. The flow should not break.

● Read articles/blogs related to the development of the CPython’s

Compiler, especially the frontend. This will help me get used to the

design principles in general.

Community Bonding Period

● Set up my blog for posting weekly progress.

● Video Conference with my mentors and discuss any new idea that we

should incorporate. I will also take suggestions on the implementation

plan.

● Complete any pending PR from the previous phase.

● Open an Issue with a list of tasks to implement before the first

evaluation phase deadline.

12



Coding Phase

Week 1-2

● Add new tests for the tokenizer module. These tests will include

comparison of tokens generated by our re2c based tokenizer and the

tokenizer module in Python. Check for the points of conflict between

both the tokenizers and work on making the new tokenizer generate

tokens identical to those of Python’s.

● Add benchmark tests for the tokenizer. This will show the time taken by

the new tokenizer as compared to Python’s to the users.

Week 3-4

● Work on the meaningful error message generation in the tokenizer

module. Making sure that tokenization error is shown under expected

circumstances by the tokenizer.

● Start the initial work for the parser. Review the definitions and the

grammar rules described in the parser file.

Week 5-6

● Work on the testing and documentation of the new parser.

● Write the report for the first evaluation phase and also complete any

pending PRs / progress blogs.

13



Week 7-8

● Work on the error handling part of the parser. Make sure meaningful

error messages are logged covering all the different circumstances.

● Add tests related to these error messages.

Week 9-10

● Work on benchmark suite for the new parser. This benchmark suite

should have options to select multiple parsers to compare the results

(eg. the old LL(1) parser and the new PEG-based parser).

● Work on automatic generation of the AST nodes.

Week 11-12

● Complete the pending PRs.

● Write the final report

Post-GSoC Plans

After GSoC, I will continue to contribute to LPython in any form I can.

LPython’s codebase will surely continue to grow once it achieves some of the

fundamental functionalities of CPython. The conversion of code to a wide

range of backends along with faster compile time will be game-changing and,

in my opinion, would be the unique selling point of this project in the future. I

will also help beginners get started with contributions and might become a

mentor if LPython gets selected for GSoC next year.

14



References
1. Write a re2c+Bison parser for Python · Issue #298 · lcompilers/lpython

(github.com)

2. Add an initial Bison parser by certik · Pull Request #337 ·

lcompilers/lpython (github.com)

3. Add initial tokenizer for Python by certik · Pull Request #310 ·

lcompilers/lpython (github.com)

4. Remove all the Fortran related items from tokenizer by

Thirumalai-Shaktivel · Pull Request #314 · lcompilers/lpython

(github.com)

5. Recognize Indent and Dedent as a Token by Thirumalai-Shaktivel · Pull

Request #313 · lcompilers/lpython (github.com)

6. Do not recognize docstrings in the tokenizer by certik · Pull Request

#312 · lcompilers/lpython (github.com)

7. Add a parser benchmark · Issue #344 · lcompilers/lpython (github.com)

8. Remove the Fortran parser completely by certik · Pull Request #260 ·

lcompilers/lpython (github.com)

9. https://github.com/python/cpython/blob/755be9b1505af591b9f2ee42

4a6525b6c2b65ce9/Grammar/Tokens

10. https://docs.python.org/3/reference/compound_stmts.html#gramma

r-token-suite

11. https://github.com/python/cpython/blob/755be9b1505af591b9f2e

e424a6525b6c2b65ce9/Grammar/python.gram

12. cpython/token.h at main · python/cpython (github.com)

13. 2. Lexical analysis — Python 3.10.4 documentation

14. Guide to CPython’s Parser - Python Developer's Guide

15

https://github.com/lcompilers/lpython/issues/298
https://github.com/lcompilers/lpython/issues/298
https://github.com/lcompilers/lpython/pull/337/files
https://github.com/lcompilers/lpython/pull/337/files
https://github.com/lcompilers/lpython/pull/310
https://github.com/lcompilers/lpython/pull/310
https://github.com/lcompilers/lpython/pull/314
https://github.com/lcompilers/lpython/pull/314
https://github.com/lcompilers/lpython/pull/314
https://github.com/lcompilers/lpython/pull/313
https://github.com/lcompilers/lpython/pull/313
https://github.com/lcompilers/lpython/pull/312
https://github.com/lcompilers/lpython/pull/312
https://github.com/lcompilers/lpython/issues/344
https://github.com/lcompilers/lpython/pull/260
https://github.com/lcompilers/lpython/pull/260
https://github.com/python/cpython/blob/755be9b1505af591b9f2ee424a6525b6c2b65ce9/Grammar/Tokens
https://github.com/python/cpython/blob/755be9b1505af591b9f2ee424a6525b6c2b65ce9/Grammar/Tokens
https://docs.python.org/3/reference/compound_stmts.html#grammar-token-suite
https://docs.python.org/3/reference/compound_stmts.html#grammar-token-suite
https://github.com/python/cpython/blob/755be9b1505af591b9f2ee424a6525b6c2b65ce9/Grammar/python.gram
https://github.com/python/cpython/blob/755be9b1505af591b9f2ee424a6525b6c2b65ce9/Grammar/python.gram
https://github.com/python/cpython/blob/main/Include/token.h
https://docs.python.org/3/reference/lexical_analysis.html
https://devguide.python.org/parser/


15. A. Skrobov - How CPython parser works, and how to make it work

better - YouTube

16. LFortran Design - LFortran Documentation

16

https://www.youtube.com/watch?v=qq6eHivQOjI
https://www.youtube.com/watch?v=qq6eHivQOjI
https://docs.lfortran.org/design/

