

MNE-Python: Enhancing Performance

of Signal Browsing using PyQt
Google Summer of Code 2021 - Martin Schulz

Mentors: Clemens Brunner, Daniel McCloy

Table of Contents
About me

Code Contribution

Project

Sub-org name

Project Abstract

Detailed Description

Timeline

Time commitment

Community Bonding (17.05. – 07.06.2021)

Learn about

Discussion

Coding (07.06. - 16.08)

Week 1 (07.06. - 11.06.): Create Prototypes 1

Week 2 (14.06. - 18.06.): Create Prototypes 2

Week 3 (21.06. - 25.06.): Create Prototypes 3

Week 4 (28.06. - 02.07.): Compare Prototypes

Week 5 (05.07. - 09.07.): Interface

Week 6 (12.07. - 16.07.): Interactivity

Week 7 (19.07. - 23.07.): Implementation

Week 8 (26.07. - 30.07.): Tests & Documentation

Week 9 (02.08. - 06.08.): Buffer for unfinished tasks

Week 10 (09.08. - 13.08.): Submitting the Project

Other commitments

2

About me

Since 2015 I am studying medicine (graduation planned for 2023) at the University of

Heidelberg, Germany (UTC+2) where I also started my medical thesis in 2018 in an MEG-Lab

with PD André Rupp about pain processing. This is where I first got in contact with MNE-

Python and programming in general. To facilitate my work and the work of others in the

laboratory with MNE-Python, I developed a PyQt-based GUI for MNE-Python. In 2020 I first

contributed to MNE-Python (alias marsipu). Recently I participated in the 2021 MNE Code

Sprint which motivated me for this application.

If you want to learn more about me, please read my CV.

Code Contribution

● Exemplary PR to MNE-Python

● Full list of PRs to MNE-Python

https://www.klinikum.uni-heidelberg.de/neurologische-klinik/neurologie-und-poliklinik/forschung/systems-neuroscience/biomagnetism
https://github.com/marsipu/mne_pipeline_hd
https://github.com/marsipu
https://heibox.uni-heidelberg.de/f/4b5d6532a2b44960acd3/
https://github.com/mne-tools/mne-python/pull/8891
https://github.com/mne-tools/mne-python/pulls?q=is%3Apr+author%3Amarsipu+is%3Aclosed

3

Project

Sub-org name

MNE-Python (Website, GitHub)

Project Abstract

This project's objective is to provide an additional backend for the visualization of two-

dimensional data (channels x time) using PyQt. It is supposed to offer high performance

for visualizing data and thus facilitating signal inspection.

First of all the most suitable PyQt-based backend will be determined regarding performance

and compatibility under the specific conditions of MNE-Python. The chosen backend will then

be used to create an implementation with equivalent features to the original matplotlib-version.

Finally the foundation for an integration of the new implementation alongside the original

version will be laid.

Detailed Description

Inspecting two-dimensional data (channels x time, also called “Raw” in MNE-Python

terminology) is an integral part of the analysis of electrophysiological data. During this step

artifacts can be annotated, bad channels marked, and even preliminary analysis of the data

can be done (by inspecting the time course or analyzing frequency components). In MNE-

Python, the visualization is currently based on matplotlib with its various backends. While it

offers a robust and proven solution, it has some limitations regarding performance and

visualization. For example, it does not offer smooth scrolling through the data and when

plotting a larger number of channels and time points simultaneously, performance decreases.

Furthermore, the GUI elements and slots for interactivity (e.g. buttons) are limited and do not

follow platform look-and-feel. A PyQt-based solution should offer more flexibility for user-

interaction.

The project's objective is to provide an alternative to the existing matplotlib-based signal

browser. As suggested by Clemens Brunner, a solution based on PyQt1 could offer the desired

increase in performance. The package pyqtgraph demonstrates the capabilities of a plotting

backend based on a pure PyQt solution. Using it as a dependency for the Raw Browser could

provide an already polished GUI framework and therefore easier implementation, but it could

also be difficult to adapt the functionality to the specific needs of MNE-Python. A custom

plotting-backend could offer a more tailored solution but it could prove to be a greater

challenge. With SigViewer there already exists a C++-Implementation of a custom plotting

backend, which could serve as a blueprint for a PyQt-version in a Raw Browser without

additional dependencies.

1 PyQt stands here for Python bindings for Qt, we aim for compatibility with PyQt5/6 and PySide2/6
probably using qtpy.

https://mne.tools/stable/index.html
https://github.com/mne-tools/mne-python
https://mne.tools/stable/index.html
https://mne.tools/stable/generated/mne.io.Raw.html#mne.io.Raw.plot
https://github.com/cbrnr
https://github.com/pyqtgraph/pyqtgraph
https://github.com/cbrnr/sigviewer
https://pypi.org/project/QtPy/

4

The first part of the project would be to further develop existing prototypes (custom Qt-

backend, pyqtgraph, by Clemens Brunner) of a Raw Browser and to compare them regarding:

● Scrolling Speed

● Scaling (dynamic resampling for improved performance)

● Dynamic change of layout (number of samples/channels)

● Layout (vertical markers, customizable scrollbar)

● (Area-)Selection (for annotations)

The next step will be choosing the best solution to build the future RawBrowser-Backend. The

decision will be based on performance-tests and overall practicability and compatibility to

MNE-Python-requirements.

Then, the interface will be added for controlling the plot. The visualization will be adjusted to

properly represent electrophysiological data. User experience will be modeled close to the

original matplotlib-implementation by reproducing its features for interaction with the data such

as marking bad-channels, placing annotations, adding a vertical marker etc..

Finally, the new backend will be wrapped into a class to provide the required programming

interface for an integration into MNE-Python as an alternative for Raw.plot(). It will be ensured

by adapting/creating tests for the new backend that user interaction leads to expected results

and performance is maintained under multiple possible circumstances (e.g., different file

formats, file sizes). A custom image-retriever (scraper) for sphinx-gallery would allow the new

backend to also appear inside the tutorials/examples on the MNE-Python-Website.

Overall, the minimal outcome should be a fundamental version of a Raw Browser with PyQt,

which showcases its advantages over the original implementation. At best, it provides

equivalent features and can be implemented into the main-branch.

In case of spare time the new backend could be extended to the plots of Epochs and ICA-

Sources, which in MNE-Python have similar plotting interfaces and similar interactivity to the

Raw Browser.

https://mne.tools/stable/auto_tutorials/index.html
https://mne.tools/stable/auto_examples/index.html

5

A schematic overview of the steps of the project (based on the original matplotlib RawBrowser, numbers=weeks)

6

Timeline

Time commitment

I will spend 4-6h/day on this project. Additionally I intend to spend some extra time each day

(~1-2h/day) participating in the MNE-Python community in their forum, and/or by addressing

small, unrelated issues that arise.

Community Bonding (17.05. – 07.06.2021)

I already spent a week contributing at the MNE-Code-Sprint (15-19 March 2021), where I got

to know the core developers. So I will use the community bonding period to follow more closely

the ongoing work related to visualization and communicate with the developers who are most

knowledgeable about it. Besides I will learn more about the usage of the different candidates

envisioned for the backend.

Learn about

● Custom Qt Plots

● SigViewer-Implementation

● Using PyQtGraph

● (Existing) Matplotlib-based Raw Browser

Discussion

● Open an issue on GitHub for discussion about the new RawBrowser-backend

● Exchange with other developers about visualization

Coding (07.06. - 16.08)

Week 1 (07.06. - 11.06.): Create Prototypes 1

● Qt:

○ Create Line-Object

○ Create Multi-Line-Layout

○ Time/Channel-Scrolling

Deliverable: custom Qt-prototype

Week 2 (14.06. - 18.06.): Create Prototypes 2

● PyQtGraph: Create prototype comparable to the Qt-prototype from week 1

● Add capabilities for both:

○ Changing number of samples/channels

○ Performance-Improvements (Visual Resampling)

7

Deliverable: Improved prototypes

Week 3 (21.06. - 25.06.): Create Prototypes 3

● Amplitude-Scaling

● Simple Tests for later capabilities:

○ area-selection (for annotations)

○ vertical line (vertical guide, events)

○ customizable scrollbars

Deliverable: Further improved prototypes

Week 4 (28.06. - 02.07.): Compare Prototypes

● Finish tasks left from previous weeks which are required for comparison

● Create Tests for Performance-Comparison

● Compare Prototypes and choose the one most suitable

Deliverable: Backend-Decision

Week 5 (05.07. - 09.07.): Interface

● Axes: Channels x Time

● Menu and Toolbar

● File I/O

● Keybindings

Deliverable: RawBrowser with Interface-Elements

Week 6 (12.07. - 16.07.): Interactivity

● Mark bad channels

● Annotate bad segments

● Vertical Guide/Events

● optional:

○ Butterfly-Mode

○ DC removal

Deliverable: interactive features (as in original matplotlib-backend) added

8

Week 7 (19.07. - 23.07.): Implementation

● Create Class which fits into structure of Raw.plot()

● Implementation into MNE-Python

● Add/Edit Tests

Deliverable: Usage possible from MNE-Python (on my experimental branch)

Week 8 (26.07. - 30.07.): Tests & Documentation

● Continue Add/Edit Tests

● Add compatibility for existing tutorials with sphinx-gallery

Deliverable: Tests & Documentation

Week 9 (02.08. - 06.08.): Buffer for unfinished tasks

Deliverable: Finished unfinished tasks

Week 10 (09.08. - 13.08.): Submitting the Project

● Open Pull-Request on GitHub

● Resolve upcoming issues

Deliverable: Finished Project

Other commitments

On two weekends during the program (05.06. - 06.06, 10.07. - 11.07.) I will participate in

courses for emergency medicine which require preparation time in the week before. However

this should not interfere with my ability to participate in GSoC those weeks.

