
Organization​: Python Software Foundation

Sub-organization​: FURY

FURY: Create new UI widget

FURY - Software Library for Scientific Visualization in
Python

Contents

● About Me

● Contact Information

● Code and Project Contributions

● Project Information

● Stretch Goals

● Project Timeline

● Commitments and availability

About Me

Brief Introduction

Hello this is Soham Biswas currently in 2​nd​ year pursuing my Bachelor’s(B.Tech)
degree in Computer Science & Engineering from Institute of Engineering &
Management, Kolkata.

I have been a Python developer for almost 3 years now and have worked on several
major python frameworks such as Numpy, Pandas, PyQt, PyGTK, Django etc. I have
built multiple personal and internship assignment projects using python and related
frameworks. I have experience working in the field of Cyber Security and Data
Science and would like to explore further into the field of Computer Graphics.

I am well experienced in Python, C and shell scripting. I am also well versed in other
programming languages such as C++ and Java. But my programming language of
choice has always been Python. I have research experience in the field of Computer
Vision and UI development using Python.

I have an introductory experience with VTK, which I plan to improve soon since I
have previously worked with the library while contributing and experimenting with
Project FURY.

Contact Information

Name Soham Biswas

Country India

College Institute of Engineering & Management,
kolkata.

Degree (Pursuing) Bachelor of Technology(Computer
Science & Engineering)

Current Year 2​nd​ Year

Expected Graduation Date April 2022

Email

Timezone Indian Standard Time(IST)

Github https://github.com/Nibba2018

LinkedIN https://www.linkedin.com/in/soham-bisw
as-590784168/

Slack (FURY) @Soham Biswas

Resume

https://github.com/Nibba2018
https://www.linkedin.com/in/soham-biswas-590784168/
https://www.linkedin.com/in/soham-biswas-590784168/

Code and Project Contributions

I have deployed and worked on open issues in the FURY github repo. The PRs that I have
worked on are as follows:

1. #165 - Vertical Layout for LineSlider2D
It was an ​Enhancement​ PR in which I enhanced LineSlider2D ui component
to support vertical layout. I modified Tests and tutorials for the newly modified
UI component. This PR closed Issue ​#108​.

2. #173 - Fixing Text Overflow of ListBox2D
It was a ​Bug Fix​ PR in which the Text Overflow bug was fixed. Usually texts
which were longer than the width of the ListBox would overflow over the UI
element and this PR fixed that problem. This PR closed Issue ​#15​ and ​#166
which were indirectly related to each other.

3. #181 - Vertical Layout for LineDoubleSlider2D

It was an ​Enhancement​ PR in which I enhanced LineDoubleSlider2D ui
component to support vertical layout. I modified Tests and tutorials for the
newly modified UI component. This PR closed issue ​#175​. This PR was also
responsible for fixing a Bug in which the handles were not aligned properly.

4. #204 - Vertical Layout for RangeSlider
It was an ​Enhancement​ PR in which I enhanced the RangeSlider ui
component to support vertical layout. I modified Tests and tutorials for the
newly modified UI component.

5. #210 - Added contour_from_label method
It was an ​Enhancement​ PR in which I implemented a method which would
create contours from a labelled array and would return the resulting contours
in a vtkAssembly instance. I also created unit tests and tutorials for the same.
This PR closes issue ​#77​.

The Issues that I have raised are as follows:

1. #159 - MouseWheelForwardEvent FAILED
This Issue was related to FURY tests where the MouseWheelForward Event
would always fail for an unknown BUG.

2. #160 - Saved Images are vertically Inverted
This Bug was related to the inverted saving of Images by the ShowManager
instance.

3. #199 - Loading of Inverted Icons using read_viz_icons
This Bug was related to the inverted display of icons when icons are loaded
using read_viz_icons.

https://github.com/fury-gl/fury/pull/165
https://github.com/fury-gl/fury/issues/108
https://github.com/fury-gl/fury/pull/173
https://github.com/fury-gl/fury/issues/15
https://github.com/fury-gl/fury/issues/166
https://github.com/fury-gl/fury/pull/181
https://github.com/fury-gl/fury/issues/175
https://github.com/fury-gl/fury/pull/204
https://github.com/fury-gl/fury/pull/210
https://github.com/fury-gl/fury/issues/77
https://github.com/fury-gl/fury/issues/159
https://github.com/fury-gl/fury/issues/160
https://github.com/fury-gl/fury/issues/199

Project Information

FURY

Software Library for scientific visualization in

Python.

1. Project Abstract

As mentioned in the Ideas List, I would be working on building scifi-like 3D and 2D
interfaces inspired from the “Guardians of the Galaxy” movie. In this project my
objective would be to add more futuristic widgets and make UI elements more
interactive without hampering performance.

Also I would like to develop a ComboBox UI element for the UI component of
fury.ui​, improve FileDialog capabilities and add a TAB UI component.

As ​Stretch Goals​ I would also like to develop Spinner, Accordion and Tree UI
components.

2. Detailed Description

1. ComboBox UI element:

A combo box is a commonly used graphical user interface widget.
Traditionally, it is a combination of a drop-down list or list box and a single-line
editable textbox, allowing the user to either type a value directly or select a
value from the list. The term "combo box" is sometimes used to mean
"drop-down list".

The mentioned UI element can be created by the following existing UI
components:

● ui.TextBox2D​ -> For the editable text field.
● ui.Button2D​ -> For opening the drop-down list.
● ui.ListBox2D​ -> For displaying available options.

A quick example of such as an arrangement can be as follows:

2. FileDialog capability improvements:

1. Horizontal Slider for File Dialog:

Currently File Dialog supports only vertical scrollbar. It would be great
if a horizontal scrollbar could be introduced along with it. It will be
helpful as we can display more information along with the file names
such as size of the files, date modified etc.

2. Adding Buttons for additional functionality:

Adding additional buttons such as “Save”, “Open”, “Cancel” etc will
help improve the functionality of the UI element. Currently, FileDialog
only supports Left Clicking a particular file or folder to access it.

3. Editable Text Field for quick access:

We can provide an editable text field so that the user can directly type
the file/folder name that they are looking for.

3. Tab UI component:

In interface design, a Tab is a graphical control element that allows multiple
documents or panels to be contained within a single window, using tabs as a
navigational widget for switching between sets of such windows.

Similar Tab like UI component can be built using the following existing UI
components:

● ui.Panel2D ​ -> For containing the elements within a Tab.
● ui.TextBlock2D​ -> A reference for users to change tabs.
● ui.Button2D ​ -> For Closing Tabs.
● ui.Button2D​ -> For creating new Tabs.

A quick example of such an arrangement can be as follows:

3. Stretch Goals

These are the extra elements or components that I would like to work on once I am
done with my main goals for the event. These stretch goals will be worked on if I
have extra time left for the event after the completion of my necessary objectives.

1. Spinner UI widget:

Value input control which has small up and down buttons to step through a
range of values. This can be useful when we require discrete control over a
particular range of value. Getting discrete values can be difficult while using
line sliders or double line sliders.

Spinner UI component can be built using the following existing UI
components:

● ui.TextBox2D​ -> for an editable text field to display selected values.
● ui.Button2D ​ -> for increasing the value displayed in TextBox.
● ui.Button2D​ -> for decreasing the value displayed in TextBox.

A quick example of such an arrangement can be as follows:

2. Accordion UI Widget:

A vertically stacked list of items, such as labels or thumbnails where each
item can be "expanded" to reveal the associated content. This UI widget can
be useful in categorizing various Menu elements. One such implementational
example can be as such where we subdivide the menu of ​viz_ui.py
example further. For e.g we can divide “Line & Ring Sliders” further into “Line
Slider”, “Range Slider” and “Ring Slider”.

Accordion UI component can be built using the following existing UI
components:

● ui.TextBlock2D​ -> For storing the name of the element
● ui.Button2D ​ -> For acting as a state of branched or unbranched.
● ui.Panel2D​ -> For containing its children.

A quick example of such an arrangement can be as follows:

3. Tree UI Widget:

A Tree UI widget is a graphical control element that presents a hierarchical
view of information. Each item (often called a branch or a node) can have a
number of subitems. This is often visualized by indentation in a list.
An item can be expanded to reveal subitems, if any exist, and collapsed to
hide subitems.
Tree views are often seen in file manager applications, where they allow the
user to navigate the file system directories. They are also used to present
hierarchical data, such as an XML document. A tree UI component is very
similar to that of an Accordian. The only difference being a tree has
indentation for displaying its children. Tree UI also has depth deeper than 1
whereas accordions have a depth of 1 only.

The tree UI will be quite interesting from other UI components as each
instance will have a nested structure of a different instance of itself.
A tree UI component can be built using the following existing UI components:

● ui.TextBlock2D​ -> For storing the name of the element.
● ui.Button2D ​-> Arrow icon to display the state of that branch.
● ui.TreeUI​ -> TreeUI object to hold subsequent children.

Project Timeline

Period Milestone

Community Bonding Period
May 4 to June 1

Week 1
May 4 to May 11

● Get to know the mentors and admin of the project.
● Discuss with the requirements and vision for the mentioned

features.

Week 2
May 12 to May 19

● Discuss which of the three sub-topics should be worked on
first.

● Finalize implementation details for the said sub-topics.

Week 3, 4
May 20 to June 1

● Identify and merge any pending pull requests which
contribute towards the goals in this proposal, or otherwise
essential to FURY.

● Discuss about stretch goals and decide the order of
implementation.

Phase 1
June 1 to June 29

Week 1
June 1 to June 8

● Start with the overall structural code of the ComboBox UI
component by selecting the required inherits.

● Start building up the editable text-field part of the UI

Week 2
June 9 to June 15

● Work on Button selection and creation for displaying the
drop down list for options.

Week 3
June 16 to June 23

● Work on ListBox component UI for displaying the options.
● Integrate all the individual components together.

Week 4
June 23 to June 29

● Create Unit Tests for the newly developed UI element.
● Create a tutorial or example for the same.
● Perform bug fixes.

Phase 1 Evaluations -------------------- ​June 29 to July 3

Phase 2
June 29 to July 27

Week 1
June 29 to July 6

● Work on File Dialog improvements
● Add Horizontal Slider for File Dialog
● Add Buttons for functionality

Week 2
July 7 to July 13

● Implement an Editable text field for quick access.
● Write unit tests for the File Dialog and perform bug fixes.

Week 3
July 14 to July 20

● Start working on the Tab UI component.
● Work on building the panel which will hold individual tabs

and close buttons together.

Week 4
July 20 to July 27

● Work on “add new tab” button
● Work on the content encapsulating Panel.

Phase 2 Evaluations -------------------- ​July 27 to July 31

Phase 3
July 27 to August 24

Week 1
July 27 to August 3

● Create unit Tests for TAB UI
● Add tutorial for Tab UI
● Perform Bug fixes
● If time persists, work on Stretch Goal 1.

Week 2
Aug 4 to Aug 10

● Add Support for handling multiple tabs.
● Optimise the added changes for better performance.
● If extra time remaining work on Stretch Goal 2.

Week 3
Aug 11 to Aug 17

● Buffer period to complete any remaining tasks or to fix
bugs found

● Prepare documentation for the work done during the GSoC
period.

● In case extra time is remaining work on Stretch Goal 3.

Week 4
Aug 17 to Aug 24

● Thoroughly debug all developed components.
● Prepare demonstration videos for all introduced features.
● Prepare the final demo for all changes made.

Final Evaluations -------------------- ​August 24 to August 31

Commitments and Availability

1. Semester Exams during End-May or Early-June for a duration of approximately 10

days.
2. I do not plan on any personal vacations and travel otherwise.
3. My working hours would most likely be(EST) from ​2:30 to 4:30​ and ​8:00 to 12:00 ​for

both weekdays and weekends.
4. However, I am willing to adjust and re-plan the timings as per mentor/admin

availability and any unknown requirements if any in future.
5. I will only be applying to FURY for GSoC 2020.

