

DFFML: Integrating Image Processing into DFFML
Python Software Foundation: Data Flow Facilitator for Machine Learning

About Me

Name Saksham Arora

Github sakshamarora1

Gitter sakshamarora1

Email

Time Zone IST (GMT +5:30)

Phone

LinkedIn Saksham Arora

Education and Background

University Maharaja Agrasen Institute of Technology,
GGSIPU

Location Delhi, India

Program B.Tech in Information Technology

Year 2nd

Expected Graduation 2022

https://github.com/sakshamarora1
https://gitter.im/sakshamarora1
https://www.linkedin.com/in/sakshamarora1/

Code Contribution in DFFML

Contribution Issue Pull Request Status

Added logging for testing
It was my first PR for this project so I was
getting familiar with the codebase of the
project and how things work.

#156 #161 Closed,
Merged

Replaced -features with
-model-features
Updated the documentation to reflect the
changes made in the code and get a
better understanding of the workflow.

#250 #251 Closed,
Merged

Resolved negative value error for n_jobs
parameter
Found why the n_jobs parameter for the
scikit models wasn’t able to take negative
value as an argument and helped in fixing
the code.

#191 #266 Closed,
Merged

Added new Scikit Models
Added 15 new Scikit Models for both
Classification(6) and Regression(9).
List of Added Models .

#272 #276 Closed,
Merged

Added IDX1 and IDX3 source files
Found a way to read the MNIST dataset
from the IDX source files and train the
existing models on them for Digit
Prediction.

- #294 Closed,
Merged

Reading PNG Images as arrays for
MNIST Prediction
Used the Python Imaging Library (PIL) to
read PNG images as arrays of the same
dimensions as the MNIST dataset for
predicting Digits (in PNG format) on
models trained on MNIST Dataset.

#371 #399 Closed,
Merged

https://github.com/intel/dffml/issues/156
https://github.com/intel/dffml/pull/161
https://github.com/intel/dffml/issues/250
https://github.com/intel/dffml/pull/251
https://github.com/intel/dffml/issues/191
https://github.com/intel/dffml/pull/266
https://github.com/intel/dffml/pull/276/commits/b83c348bc5c7fde3e9a0ef05246bfe71fdadd19b#diff-4ac32a78649ca5bdd8e0ba38b7006a1eR9-R27
https://github.com/intel/dffml/issues/272
https://github.com/intel/dffml/pull/276
https://github.com/intel/dffml/pull/294
https://github.com/intel/dffml/issues/371
https://github.com/intel/dffml/pull/399

Project Information

1. Organisation: Python Software Foundation

2. Sub-Organisation: DFFML

3. Project Abstract:

Integrating Image Pre-Processing and Computer Vision into DFFML
to train, test and predict on already existing machine learning models.

4. Detailed Description:
DFFML is a machine learning based project which provides APIs for

training and testing datasets using various machine learning frameworks such
as scikit-learn, tensorflow, etc; making it easier for anyone to input there
datasets to train and test upon no matter the knowledge of the user in
programming.

At present, there is no way of training and testing the existing
machine learning models in DFFML on image datasets, so I have selected 2
image processing python libraries OpenCV and Scikit-Image to wrap in DFFML.

Most of the machine learning algorithms are very likely to
overfit in the training process. Part of the problem is that visual data is very
complex, therefore models tend to have high dimensions of input and have to
have a lot of parameters to fit. And when there isn’t enough training data
available, overfitting happens really fast.

The project is divided into 2 parts:

1. Wrapping the Image Processing Libraries
2. Implementing High Level Operations

Note :
Even though I will be wrapping all the sub-modules and functions in OpenCV
and Scikit-Image, here are a few functions to provide an idea of the operations
that will be performed using them.

Wrapping the Image Processing Libraries

OpenCV

Even though I will be wrapping the complete library, here are some of the important
functions in OpenCV that are popularly used for image pre-processing and take the
highest priority:

Image Filtering

bilateralFilter filter2D dilate Sobel

blur GaussianBlur morphologyEx pyrUp

boxFilter Laplacian pyrDown Scharr

buildPyramid medianBlur erode sepFilter2D

sqrBoxFilter spatialGradient pyrMeanShiftFiltering

Geometric Image Transformations

resize linearPolar getAffineTransform warpPolar

remap logPolar warpPerspective ConvertMaps

undistort warpAffine

Image Thresholding

adaptiveThreshold threshold

Drawing Functions

arrowedLine ellipse polylines drawContours

circle line rectangle drawMarker

Color Space Conversions Color conversions provided in OpenCV

Feature Detection

Canny cornerHarris HoughCircles HoughLines

Miscellaneous

blendLinear watershed Contour Operations grabCut

distanceTransform floodFill matchTemplate integral

Cascade Classifiers for face and eye detection

https://docs.opencv.org/master/d8/d01/group__imgproc__color__conversions.html#ga4e0972be5de079fed4e3a10e24ef5ef0

Scikit-Image

A few important features present in Scikit-Image are not available in OpenCV and vice
versa. So, here are a few popular functions from this library:

scikit.feature

canny peak_local_max local_binary_pattern haar_like_feature

daisy hessian_matrix Blob functions Corner functions

scikit.filters

inverse sobe laplace hessian

wiener scharr rank_order unsharp_mask

gaussian prewitt gabor_kernel meijering

frangi roberts threshold sato

filters.rank

autolevel modal enhance_contrast otsu

bottomhat mean pop majority

equalize subtract_mean sum entropy

gradient median tophat noise_filter

maximum minimum enhance_contrast_percentile

scikit.morphology

erosion skeletonize max_tree white_tophat

dilation watershed flood_fill black_tophat

opening thin convex_hull

closing Remove_small_holes Remove_small_objects

scikit.restoration

wiener Denoising functions unwarp_phase richardson_lucy

scikit.transform

hough_circle hough_line hough_ellpse integrate

warp radon resize rotate

skimage.util

Image as any datatype crop invert random_noise

Operation Workflow

The second part of integrating these libraries into DFFML is the operation
workflow, that is, defining the operation flow schema for the various features and
filters in the above mentioned libraries and defining how the high level
operations and low level operations will work and how the user will be able to
use these operations.

Approach 1:

In this approach, all the image processing functions are treated as
individual operations.

Approach 2:

In this approach, there will be only one operation (opencv or scikitimage in
this case), to which the functions will be passed as parameters of the larger
operation.

I’d like to go with the 2nd approach as it will be a better way for the user to use
the operations and will give them more freedom to use the functions available.

Users will be able to implement any number of operations on their image
dataset for which the flow will be provided by them.

For instance, here are a few examples:

● A simple example would be Image Scaling , the resize feature in
Scikit-Image where a trained model will be able to predict on any image
regardless of its original aspect ratio.

● Another example would be the Canny edge detection method, in which it
returns the edges in the image which can be fed as a feature to the model.

High Level Operations

Other than this, I plan on adding a few Custom Operations which will act as high
level operations implementing a predefined flow of the image processing
functions (i.e. the low level operations). The user will pass the values of
functional parameters of the high level operation.

The working of a custom operation:

A simple example:
For further understanding of High level operations, let us look at a face
detection example where:

● Step 1 : Face Detection using Cascade Classifiers .

 Image downloaded from https://www.mediaweek.com

● Step 2 : Copying the face rectangles using the coordinates generated from

step 1.

and more

● Step 3 : Resizing all the faces to a common aspect ratio.

● Step 4 : Either feed the preprocessed data into a model or save it as a new
 dataset(using writing/saving function).

These operations could also be implemented manually by the user but
providing a custom operation for this task will ease things which is what DFFML
targets to achieve.

Dynamic loading of functions :
➤ Scikit Image has the feature skimage.lookfor , which can be used for

dynamic loading of the functions instead of importing all the functions all
at once at the start.

https://docs.opencv.org/3.4/db/d28/tutorial_cascade_classifier.html
https://www.mediaweek.com.au/wp-content/uploads/2017/05/Group-photo-of-CEOs-at-Parliament-House-media-event-e1505432277767.jpg

➤ While there is no such feature available in OpenCV, dynamic loading can
be done by using the configparser from the python standard library. A
config.ini file will be used which will contain all the necessary information.

➤ If dynamic loading of functions doesn’t work out, then there is the option
of importing the functions all at once.

With this project, DFFML will be able to train, test and predict on a large number
of popular datasets for example, VIsualQA, ImageNet, Open Images Dataset.

Weekly Timeline

Pre-GSoC (Upto May 4):

● Make more contributions through issues and features to further my
understanding of codebase.

● Brush up all the necessary topics for the libraries to wrap around DFFML.
● Get more familiar with the operation workflow of the project.

Community Bonding (May 4 - June 1):

● Communicate with the mentors on different ideas for the image
processing stuff and get input on how it can be integrated in a user
friendly way.

● Communicate with other selected applicants about their projects and how
we can be of help to each other.

● Keep working on issues and start working on wrapping OpenCV library.

> Phase 1 of 3 (Wrapping OpenCV)

Week 1 (June 1 st - June 8 th):

● Start with the wrapping of the most important functions in OpenCV as
discussed with the mentors.

Week 2 (June 8 th - June 15 th):

● Continue wrapping of OpenCV library.
● Start working on the dynamic loading of functions.

Week 3 (June 15 th - June 22 nd):
● Continue the same as Week 2.
● Start updating the documentation and add examples for image

pre-processing.

Week 4 (June 22 nd - June 29 th):

● Finish the wrapping of OpenCV.
● Finish the documentation of OpenCV functions usage.
● Write test cases for OpenCV.

> Phase 2 of 3 (Wrapping Scikit-Image)

Week 5 (June 29 th - July 6 th):

● Start wrapping of Scikit-image.
● Start working on the dynamic loading.

Week 6 (July 6 th - July 13 th):

● Continue the same as Week 5.
● Start updating the documentation and add examples for image

pre-processing.

Week 7 (July 13 th - July 20 th):

● Finish the wrapping of Scikit-Image.
● FInish updating the documentation.
● Write test cases for Scikit-Image.

Week 8 (July 20 th - July 27 th):

● A spare week to finish anything left in wrapping of OpenCV or
Scikit-Image.

● Start preparing for implementation of custom high level operations.

> Phase 3 of 3 (High Level Operations and Documentation)

Week 9 (July 27 th - August 3 rd):

● Start adding custom High Level Operations as discussed with mentors.

Week 10 (August 3 rd - August 10 th):

● Continue the same as Week 9.

● Start documenting the working of these operations.

Week 11 (August 10 th - August 17 th):

● Continue to add new custom high level operations.
● Documenting their working.

Week 12 (August 17 th - August 24 th):

● Finish working on high level operations.
● Complete the documentation & tests and add examples.

Final Week (August 24 th - August 31 st):

● Wrap things up if anything is left in wrapping of the libraries of the High
level operations.

● Prepare a final summary and organize the work into a presentable form.

Alternate Timeline :
After wrapping OpenCV in the first month, if the functions suffice the need, I
will shift the wrapping of Scikit-Image to the 3rd month and will focus on the
high level operation workflow.

Stretch Goals

After finishing the wrapping of OpenCV, Scikit-Image and finish the high level
operation workflow, I plan to work on the Output Formatting issue #335 as this
issue is important when dealing with image datasets.
I will discuss with the mentors and work on the dynamic loading of scikit
models.

Other Commitments

● End Semester Examination (For 2 weeks)
○ Due to COVID-19, the dates are uncertain. I will update the mentors

a week or 2 before my exams start.
○ Time dedicated to GSoC during exams: 3-4 hours per day.
○ Other than this, I have no exclusive plans for this summer.

https://github.com/intel/dffml/issues/335

Are you applying for other projects in GSoC?

No, I am only applying for this project.

Further Contribution

DFFML is a machine learning based project which aligns with my interest in the
field, so I will be more than happy to stay a part of the community even after the
GSoC to keep contributing and learning.

