
Google Summer of Code 2023

PyElastica - Extending contact
module capabilities



1

About Me
Name: Rahul Joon

Github: Rahul-JOON

Email: rahuljoon16@gmail.com

Linkedin: rahul-joon

University: USIC&T, Guru Gobind Singh Indraprastha University

Program: Bachelor in Technology in Electronics and Communication Engineering

Graduation Year: 2025

Location: India

Timezone: Indian Standard Time (GMT +5:30)

Resume: resume

I have been studying computer science from 11th grade of school and my first/core
programming language is python(>10k lines of code experience). I have significant interest
in applied physics and had been contributing to pyElastica since this year only. I am thrilled
to work on this project and learn along with the community.

https://github.com/Rahul-JOON
mailto:rahuljoon16@gmail.com
https://www.linkedin.com/in/rahul-joon/
https://drive.google.com/file/d/1zC-vNqNdddFYkGnU3QQ7g1chO10f9XEu/view?usp=sharing


2

Code Contribution
● Solved Issue - #169; PR - #232.

○ Problem - The continuum snake visualization example was
previously using moviepy for plotting the final result, but
‘moviepy’ was relatively slow and non-uniform among other
examples.

○ Solution - Moviepy was replaced with ‘ffmpeg’ for video
generation which is faster and uniform among other examples.

https://github.com/GazzolaLab/PyElastica/issues/169
https://github.com/GazzolaLab/PyElastica/pull/232


3

About the Organisation
Sub-org Name: PyElastica
PyElastica is the Python version of Elastica, a project that uses Cosserat Rod theory
to simulate assemblies of thin one-dimensional bodies. Elastica is free and open-source
software. It is simple to use, extensible, and modular in design. It enables the user to
specify a set of Cosserat rods that are susceptible to both internal and external (such as
muscle torque, gravity, friction, etc…) forces. Rods can be combined to form assemblies
of rods, which can then be used to model progressively more complex systems. Rods
also take into consideration self-contact.

The Gazzola Lab at the University of Illinois at Urbana-Champaign created and
maintains Elastica. Visit https://mattia-lab.com for more details about the projects

https://mattia-lab.com/


4

.

Project Information

Abstract
Currently, in PyElastica we can model the contact of rods with a frictional
plane or rigid cylinder and themselves.

This project aims to extend the contact module for the rod and any arbitrary
shape. Implementation of the contact module that can input any STL mesh
and create its geometry in PyElastica and also apply contact force between
the rod and imported shape. This will improve the capabilities of PyElastica
as a whole.

Skills Required: Python

Mentors: Arman and Noel

Expected size of Project: 350 hours

https://github.com/armantekinalp
https://github.com/nmnaughton


5

Following is the overview of the tasks of this project:

● Develop an algorithm to import STL mesh and convert it into PyElastica
Geometry.

● Develop a library that implements contact forces between rod and
imported shape.

● Validate implemented features/craft examples.
● Document implemented work.

Description
Algorithm to convert STL Mesh to PyElastica Geometry

An STL file is a file format used for 3D printing and computer aided
design(CAD). The name STL is an acronym that stands for stereolithography -
a popular 3D printing technology; it also stands for “Standard Triangle
Language”. This file format is widely use for rapid prototyping, 3D printing
and computer manufacturing.

The main purpose of the STL file format is to encode the surface geometry of
a 3D object. It encodes this information using a simple concept called
“tessellation” that is the process of tiling a surfacewith on or more geometric
shapes such that there are no overlaps or gaps.

For example, below is a STL mesh of a 3D model of a cube and sphere.

More info about STL formatting can be found here.

https://all3dp.com/1/stl-file-format-3d-printing/


6

STL Mesh Data Manipulation tool

We can extract the data stored in an STL file using the ‘numpy-stl’ python
package. ‘Numpy-stl’ is a simple library to make working with STL files fast and
easy. Due to all operation heavily relying on numpy this is one of the fastest
STL editing libraries for Python available.

With ‘numpy-stl’, we can create, plot, edit existing STL meshes.

For example, code snippet provided below creates a simple cube (displayed
below the snippet),

https://pypi.org/project/numpy-stl/


7

More examples of code snippets modifying STL meshes are given at
numpy-documentation.

Projection

Numpy-stl also provides support with ‘Matpotlib’ for plotting/visualization;
but our aim here is to develop the said object in PyElastica Geometry. The
required parameters for defining a rod in PyElastica are:

While STL meshes store the data about solids as surfaces, it doesn’t store
data about the texture or other properties of solid like dilation etc.

https://numpy-stl.readthedocs.io/en/latest/usage.html#


8

We can let this data be set to some default values and an option to change as
per need can be provided to the end user.

For Rigid bodies though, the parameters required are,

We can calculate the base_radius, base_length etc from the STL mesh file by
using numpy-stl.



9

Complex shapes from STL Mesh

Developing arbitrary or complex shapes in PyElastica is a different task on its
own. A Starting approach could be to build geometric complex uniform
obhjects from existing basic shapes like sphere, surface, rods etc.

For example, a ‘hollow’ cube or cuboid can be constructed by joining 6 planes
from edge to edge as shown below.

The contact forces can then be applied at all joint faces and a hollow
cube/cuboid and more uniform hollow geometries can be achieved likewise.

Though this is just a starting point, more research and brainstorming needs
to done to achieve the ultimate goal.



10

Contact forces between rod and imported shape

The contact forces include frictional, gravity, torques etc; which have already
been gracefully implemented in PyElastica among known shapes like rods,
rigid cylinders etc.

If we are to import known shapes, then applying forces will not be a difficult
task.

But for any arbitrary shape, the collision forces have not yet been defined.
This is also a task to brainstorm about with the help of Gazzola RSOS 2018.

https://mattia-lab.com/wp-content/uploads/2018/06/Gazzola_RSOS_2018.pdf


11

Validation/Example Cases for New Users

This is relatively easy part; we simply can make a rod and temporary(‘temp’)
STL mesh file that contains a model of a uniform cube that collides with
relevant contact forces and the result can be plotted in a video with different
planes as reference frames.

Video generation will be achieved through using ffmpeg and POVray like in
other examples.

Timeline
I am familiar with the codebase, so I’ll be looking to start early so that things
go smoothly during the coding period.

The whole project can be broadly categorised into milestones and labels:

Milestone 1: STL Mesh file to PyElastica geometry

● Label 1.1: Develop method to import stl file without raising exceptions
● Label 1.2: Develop algorithm to convert data to PyElastica geometry

form
● Label 1.3: Returning shape objects to users
● Label 1.4: Documenting functions definitions

Milestone 2: Complex Shape Genisis

● Label 2.1: Discuss the approach/workplan with mentor
● Label 2.2: Implement via code
● Label 2.3: Document the workflow, features added

https://ffmpeg.org/
http://www.povray.org/


12

Milestone 3: Implement contact forces between imported shapes

● Label 3.1: Research and discuss with mentor
● Label 3.2: Implement the final algorithm
● Label 3.3: Document the features added

Milestone 4: Validation/Examples

● Label 4.1: Discuss the best example approach for new users
● Label 4.2: Basic code for collission
● Label 4.3: Output the video files
● Label 4.4: Document instructions and implemented features

Community Bonding Period
(May 4 - May 29)

● Interaction with the community.
● Discuss the project design.
● Modifying approach/rectifying any

misunderstanding regarding the
project.

● Continue to solve bugs that are within
my scope.

● Documenting work.
● Setup blogs for weekly/fortnightly

updates.

Week I (May 29 - June 6)
● Method to import STL mesh without

raising exceptions (label 1.1).
● Testing and documenting.

Week II (June 6 - June 12) -
Week III(June 12 - June 19)

● Converting data to PyElastica
Geometry(Basic Shapes). (label 1.2)

● Testing and Documenting.

Week IV(June 19 - June 26)
● Returning finished outputs to users.

(label 1.3)
● Testing and Documenting.

(Accomplishment of Milestone 1)



13

Week V (June 26 - July 3)
● Discussing the solution to build

complex shapes. (label 2.1)
● Blog and documenting.

Week VI (July 3 - July 10)
● Implementing the outcome of

discussion or researching more as per
need. (lable 2.2)

● Documenting. (Accomplishment of
milestone 2)

Midterm Evaluation (July 10 -
July 14)

● Debugging.
● Working on reviews.
● Documenting.

Week VII (July 14 - July 21)
● Researching regarding contact forces

among arbitrary shapes in physics
models. (label 3.1)

● Document findings.

Week VIII (July 21 - July 28) -
Week IX (July 28 - August 4)

● Implementing contact forces library.
(label 3.2)

● Documenting. (Accomplishment of
milestone 3)

Week X (August 4 - August
11)

● Discussion about example format.
(label 4.1)

● Implementing example for first time
users. (label 4.2)

● Output the video files. (label 4.3)
● Documenting with instructions for first

time users. (Accomplishment of
Milestone 4)

Week XI (August 11 - August
18)

● Blog writing all the work done so far.
● Buffer week for any backlog.



14

Final Week (August 21 -
August 28)

● Backlog clearance.
● Finalising code for submission.

Final Evaluation (August 28 -
September 5)

● Wrap up everything.
● Work on review(if any).

The provided timeline is tentative and not rigid; if the features call for it, we
will gladly expand it to add more features, including the development of
more complicated shapes as previously mentioned.

Post GSoC
● If this project continues, I plan to keep contributing everything I can to

PyElastica.

Other Commitments
● The GSoc timeline is mostly in sync with my summer break of university

thus allowing me ample time to work.
● Though I may have my university end sem exams at the end of July,

nevertheless the buffer week can be used to adjust for it.
● I am not applying to any other organizations and have no other

obligations during my GSoc.



15

Why Me
My primary programming language is Python, and long before PyElastica, I
worked on projects involving physics models, which are listed below:

● Tank Busters
○ A physics maze simulation game, that implements conservation

of momentum for rebounding and rotational mechanics.

○
● Lost in Space

○ An arcade shooting game in python using the PyGame framework.
○ It forumulates the mechanics of collision.

● Also,
○ I have been studying and implementing computer science since High

School and am proficient in Data Structures and Algorithms
(qualified ACM-ICPC regionals during high school).

○ I have on-hands project experiences from personal projects to
internships at SDC, USICT; ranging from python development to web
& app development(GitHub).

https://github.com/Rahul-JOON/CS_project
https://github.com/Rahul-JOON/Lost-in-space
https://icpc.global/
https://github.com/Rahul-JOON

