
FURY: Ribbon and Molecular Surface
Representations for Proteins

GSoC 2021 Proposal

Organization: Python Software Foundation

Sub - organization: FURY

Contents
● About Me
● Code Contributions
● Project Information
● Stretch goals
● Project Timeline
● Commitments and Availability

1

About Me

Personal Info
- Name: Sajag Swami
- Location: India
- Timezone: India (UTC+5.30, EST+9.30)
- Github: SunTzunami
- LinkedIn

University Info
- University: Indian Institute of Technology, Roorkee
- Major: Production and Industrial Engineering
- Current year: 2nd year (2023 expected graduation)
- Degree: Bachelor of Technology (B.Tech)

Brief Introduction
I am a second year student enrolled in Production and Industrial
Engineering (4 year course) at IIT Roorkee. I developed interest in
programming especially in computer graphics in my high school days while
working on my high school computer science project in which I utilised the
graphics library of C++ 3.0 to create visuals. Since then, I have worked on
multiple personal and group projects which mostly involved python and
ranged across diverse fields like statistical analysis, 2D animation, and
quantitative finance. All these projects can be found on my Github profile.
In addition to Python, I possess a good knowledge of R and some basic
knowledge of machine learning and biology which I gained during my
research internship. I also possess basic knowledge of biomolecules which
I acquired while preparing for various national level exams.
I came to know about FURY back in September 2020 and have since then
spent quite some time reading the documentation of FURY and also read a
bit of the documentation of VTK. I’ve experimented with the

https://github.com/SunTzunami
https://www.linkedin.com/in/sajag-swami-3082891a2/
https://github.com/SunTzunami/Space_and_Light
https://github.com/SunTzunami

2

tutorials/demos made using FURY and made some tutorials/demos of my
own and added some of them to the FURY repo. I find FURY fascinating
because of its ease of use and versatility as a scientific visualization library
and enjoy working with it.

Programming Skills
Programming Languages and Frameworks:

Fluent in Python, C/C++
Moderately experienced in R, SQL
Sound knowledge of Object Oriented Programming

Development Environment
Ubuntu 20.04.2 (mostly used) or Windows 10
Fully customised Visual Studio Code as primary editor
Good grasp on concepts of Git

Code Contributions

I have installed FURY locally and created PRs to address some issues. In
addition to these PRs, I’ve also created PRs to add new tutorials and
features in the FURY github repo. Following are the PRs that I have worked
on -
#351 - Opacity bug fix for point and sphere actors (merged)

It was a Bug Fix PR in which I ensured that the opacity argument
passed to point and sphere actors manipulated opacity of the actors
(this was earlier not happening). This PR closed the issue #335.

#362 - An example for a time-varying 2D wave function (opened)
I tried to use a surface actor to render a time varying 2D wave
function. It aimed to resolve #324.

https://github.com/fury-gl/fury/pull/351
https://github.com/fury-gl/fury/issues/335
https://github.com/fury-gl/fury/pull/362
https://github.com/fury-gl/fury/issues/324

3

#376 - Added animations for some electromagnetic phenomena (merged)
I had an idea of creating visuals for some basic electromagnetic
phenomena and created PR for the same. It was a Documentation PR
in which I added two tutorials -
● Propagation of an an electromagnetic wave
● Helical motion of a charged particle under the influence of a

combined magnetic and electric field.
#383 - Minor documentation fix (merged)

Documentation PR
#385 - Fixed the example for superquadric function (merged)

Some variables were not initialised and some were initialized
incorrectly, as a result, the example was not working. That was fixed.
It was a Documentation and Enhancement PR.

#388 - Added simulation for brownian motion (merged)
I had an idea of creating a simulation of brownian motion via FURY.
Made a tutorial for the same. It was a Documentation PR.

#393 - Added primitive and actor for triangular prism, added tests too
(merged)

I made a primitive for a triangular prism and created an actor for the
same. Added unit tests for the actor and primitive respectively. It was
a New Feature PR.

#404 - Parametric functions- actor, primitives (opened)
I made an actor which generates parametric surfaces like Möbius
strip, Klein bottle etc. and made primitives for the same. Added tests
for the newly created actor and primitives.

Some issues that I’ve raised -
#335 - _opacity argument for point doesn't seem to work:

_opacity argument for point and sphere actors didn’t work as the
value stored in the argument was not being used to manipulate the
opacity.

#363 - Minor error in documentation of create_colormap function

https://github.com/fury-gl/fury/pull/376
https://github.com/fury-gl/fury/pull/383
https://github.com/fury-gl/fury/pull/385
https://github.com/fury-gl/fury/pull/388
https://github.com/fury-gl/fury/pull/393
https://github.com/fury-gl/fury/pull/404
https://github.com/fury-gl/fury/issues/335
https://github.com/fury-gl/fury/issues/363

4

This was with respect to the create_colormap function.
According to the comment describing the auto variable, if auto is True
then v is interpolated to [0, 10] from v.min() to v.max(). In the
actual code however, v is being interpolated to [0, 1] from v.min() to
v.max().

Project Information

Abstract
I will be working on adding a new functionality to FURY which shall enable
users to visualize various types of proteins via different representations like
Richardson aka Ribbon diagrams and molecular surface diagrams. As a
part of my stretch goals, I’d like to expand protein representations via other
representations including -
● Stick
● Ball and stick
● Wire
● Pipes and Planks
● Sphere

Detailed description of the project

Atomic Level Data
Details about the protein to be visualized such as its atomic level data
(coordinates of the atoms) will be essential for generating the
visuals. Molecular structural data of a protein is stored in a PDBx file.
PDBx/mmCIF format is the latest standard for files containing atomic
coordinates of proteins (it replaced the PDB format and became the

https://fury.gl/latest/_modules/fury/colormap.html#create_colormap

5

standard PDB archive format in 2014).The format is based on a
context-free grammar. PDBx/mmCIF has a simple grammar. Data is
presented in either key-value or tabular form. It is much easier to
parse than the record-oriented PDB format. Parsing PDBx/mmCIF
files to obtain atomic coordinates will be the first step and can be
done by using Biopython which has a module
(Bio.PDB.MMCIFParser) that focuses on working with crystal
structures of biological macromolecules and has a MMCIFParser
object which will help in extracting atomic level data (coordinates of
the atoms). A snapshot of PDBx/mmCIF file -

Richardson aka Ribbon diagrams
Brief info about the structure of Ribbon diagrams:
Ribbon diagrams are generated by interpolating a smooth curve
through the polypeptide backbone. α-helices are shown as coiled
ribbons or thick tubes, β-strands as arrows, and lines or thin tubes for

6

random coils. The direction of the polypeptide chain may be indicated
by a colour ramp along the length of the ribbon.

Steps involved in constructing Ribbon diagrams:
1. Collect the coordinates of alpha carbons from the PDBx file of

the protein being rendered.
2. Generate backbone trace of the protein by generating a curve

through alpha carbons.

𝐵𝑎𝑐𝑘𝑏𝑜𝑛𝑒 𝑡𝑟𝑎𝑐𝑒 𝑤𝑖𝑡ℎ α𝐶 𝑎𝑡𝑜𝑚𝑠 (𝑔𝑟𝑒𝑦 𝑠𝑝ℎ𝑒𝑟𝑒𝑠) 𝐵𝑎𝑐𝑘𝑏𝑜𝑛𝑒 𝑡𝑟𝑎𝑐𝑒 𝑎𝑙𝑜𝑛𝑒

3. Apply smoothing algorithms to the generated backbone trace to
convert it into smoothed backbone trace. (Potential smoothing
algorithms that might be used: cubic B-spline or Hermite spline)

𝑆𝑚𝑜𝑜𝑡ℎ𝑒𝑑 𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒 𝑡𝑟𝑎𝑐𝑒 𝑆𝑚𝑜𝑜𝑡ℎ𝑒𝑑 𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒 𝑡𝑟𝑎𝑐𝑒 𝑎𝑙𝑜𝑛𝑒

7

4. The ribbon is a smoothed backbone trace expanded in width.
We can generate ribbon curves by translating the curve parallel
to the helix axis.

𝑅𝑖𝑏𝑏𝑜𝑛 𝑅𝑖𝑏𝑏𝑜𝑛 𝑎𝑙𝑜𝑛𝑒

5. Add the other features like beta strands and loops, shading and
colors etc.

Molecular Surface Diagrams
A common representation is due to Connolly. It virtually rolls a 'water' probe
ball (1.4-1.8 Å diameter) over the Van der Waals surface, smoothing the
surface and bridging narrow crevices, which are inaccessible to the solvent.
This partitions the surface into
convex, concave and saddle
patches according to the number
of contact points between the
surface atoms and the probe ball.
As Output, the representation
consists of points + normals to the
surface. These are sampled
according to some required
sampling density (e.g. 10 pts/Å2).

https://drive.google.com/file/d/1eiFBZkHjj2YKk5DUB69lnfI5g52m0kEM/view?usp=sharing

8

There have been many advances in molecular surface visualization since
Conolly’s proposal and newer approaches by Lin et al and Ryu et al might
prove more efficient. As such, implementing molecular surface diagrams
will be done by comparing rendering quality, speed taken to render by the
various methods discussed above (and/or other parameters as per the
mentor’s suggestions). Mentor’s insights will prove beneficial when
selecting which method to use for the generation of protein surfaces.

Creating demos
After writing the code for generating ribbons and molecular surface
diagrams, I’ll add demos to show users how they can use the newly added
features to render protein structures.

References
Bio.PDB.MMCIFParser module
PDBx/mmCIF General FAQ
Backbone representations
Molecular Surface Representation
I’ve collected and stored some research papers that could help in
constructing ribbon diagrams and molecular surfaces here.

Stretch Goals

After the implementation of ribbon diagrams and molecular surface, I aim
to expand Protein representation via other models like-
● Stick
● Ball and stick
● Wire
● Pipes and Planks
● Sphere

https://drive.google.com/file/d/1nfRcHrc4QC9fRHw_oCxh9Dl-K6Z5RiDW/view?usp=sharing
https://drive.google.com/file/d/1VsFnXUgT1FJLNbfh9BzGoD__sgSxhkWl/view?usp=sharing
https://biopython.org/docs/1.75/api/Bio.PDB.MMCIFParser.html
https://mmcif.wwpdb.org/docs/faqs/pdbx-mmcif-faq-general.html
https://proteopedia.org/wiki/index.php/Backbone_representations#Smoothed_Protein_Backbone_Trace
http://www.cs.tau.ac.il/~rshamir/algmb/00/scribe00/html/lec13/node22.html#:~:text=Representing%20a%20protein%20by%20its,due%20to%20Connolly%20%5B2%5D.
https://drive.google.com/drive/folders/1xgLeuoPEYpU71g219OTkyG6a0PKPh0jF?usp=sharing

9

I'll explain each model with a tutorial/demo for the users. I also hope to add
a feature of custom colormaps for the different structures of proteins
which will let the users use custom colormaps to color the structures.
If I still possess time after implementing the models mentioned above, I
plan on creating new physics simulations (using FURY and pybullet).

Project Timeline

Period Goal/Milestone

Community Bonding Period
May 17, 2021 - June 7, 2021

Week 1
May 17- May 24

● Get acquainted with the mentors and the admins
of the project and discuss the vision of the
project and gain insight about implementing the
features.

● Decide which of the two main structures should
be worked upon first and finalize implementation
details for the structures.

Weeks 2, 3
May 25 - June 7

● Identify and merge any pending pull requests
that could aid the project and otherwise.

● Discuss about the stretch goals and decide the
order of their implementation.

Commencement of the coding period

Week 4
June 7 - June 14

● Learn how to interpret and parse PDBx files.
● Write code to extract atomic coordinates of

alpha carbons and use them to construct
backbone traces.

Week 5
June 15 - June 21

● Select the optimal smoothing algorithm for
smoothening the backbone traces from B spline
and Hermite spline and implement it.

● Generate ribbon curves by translating the curve
parallel to the helix axis.

10

Week 6
June 22 - June 29

● Add the other features like beta strands and
loops, colors etc.

Week 7
June 30 - July 7

● Create Unit Tests for the newly added Ribbon
representations

● Create demos or examples for the same.
● Perform bug fixes.

Week 8
July 8 - July 15

● Start working on Molecular Surface structures of
proteins by reading the research papers.

● Select the appropriate method for Molecular
Surface Representation which best suits the
needs (optimum speed and rendering ability) as
instructed by the mentor.

● Write the code to implement CPK coloring for
different atoms which will comprise the protein.

Evaluations
July 12 - 16

Week 9
July 16 - July 23

● Create the Molecular Surface structures by
implementing the methods discussed in the
research papers which were selected in the
previous week i.e. week 8.

Week 10
July 24 - July 31

● Create Unit Tests for the newly added Molecular
Surface representations.

● Create a demo or example for the same.
● Perform bug fixes.
● Work on stretch goals if time permits by

implementing stick, ball and stick and wire
representations (create tests and demos for the
same)

Week 11
Aug 1 - Aug 8

● Work on stretch goals by implementing Pipes
and Planks and Sphere representations of
protein structures.

● Add unit tests and demos for the same.
● Try making some physics simulations if time

permits.

Week 12 ● Debug the code for all the developed protein

11

Aug 9 - Aug 16 structures.
● Prepare demonstration videos/tutorials for the

newly implemented features.
● Prepare the final demo for all new features.

Final Evaluations
Aug 16 - 23

Commitments and Availability

1. College End Term Examinations from 19 May to 29 May.
2. I’m doing a research internship on the side but it won’t affect my time

investment for GSoC as I’m doing the research internship now too
while managing online classes, assignments and quizzes (which add
up to at least 40 - 45 hrs a week).

3. I have no exams in the coding period (from June 6 to Aug 23). I don’t
have classes either for the most part of the coding period as I have
my summer vacations from May 30 to Aug 2, therefore I’ll be able to
invest at least 40- 45 hrs a week in the GSoC project as I won’t have
any online classes nor will I have to study for any exam/assignment.

4. I have no plans of any personal vacations nor of any travel otherwise.
5. Typical working hours (in EST): 11:30 pm to 2:30 am, 4:30 am to 7:30

am, 11:30 am to 2:30 pm.
6. I’m willing to reschedule and re-plan the timings as per mentor’s/core

team’s availability/requirements.
7. I’m only applying to FURY for GSoC 2021.

