
Enhance statistical inference using linear regression in MNE-Python 
 

Proposal by José Carlos García Alanis 
Mentors: D.E., J.S. 

 
 

Introduction: 

In statistics, linear regression is typically used for modelling relationships between one 
(simple linear regression) or a series (multiple linear regression) of predictor variables and a 
response variable. In particular, by determining the strength of the relationship between 
predictors and response variables, linear regression algorithms can explain variation in the 
response variable, which can be attributed to variation in the predictors, allowing the 
identification of variables and/or subsets of data that contain relevant information about the 
response variable. 

Implementation in MNE: 

To date, linear regression functionality in the premier toolbox for analysing neural time series 
in Python, MNE, is capable of handling designs mostly characterised by the introduction of 
categorical predictors, to explain variation in brain activity, based on ordinary least squares 
estimation. 

Basic overview of implementation of linear regression in MNE: 

At the moment, the mne.stats.linear_regression() function (in the following referred 
to as linear_regression for convenience) in MNE takes an MNE-python data structure 
(e.g., an array-like object of epoched neural time series data) enriched with metadata about 
the data to be regressed, such as of number of trials, sensors and time points for regression. 
In addition, the linear_regression function takes a two-dimensional numpy.array 
(number of observations/trials x number of predictors) as design_matrix argument. This 
design matrix and the neural data are then forwarded by the linear_regression function 
to NumPy’s numpy.linalg.lstsq() function to compute a least square solution of the 
data given the design matrix. MNE’s linear_regression function then returns a 
dictionary of named tuples (one for each predictor/column in the design matrix) containing 
the regression coefficients and p-values among other results. 

Even though this approach can be used to inspect relationships between a wide variety of 
predictors and brain activity data, the limited options for specifying more complex regression 
models, such as those based on robust and hierarchical estimation algorithms (see for 
instance https://osf.io/hdxvb/) are currently preventing users from making use of the 
functionality of MNE’s linear_regression at a larger scale, and from using more 
elaborate regression tools commonly implemented in multiple scientific fields for which MNE 
is relevant. 

In addition, documentation with examples for commonly implemented designs in cognitive 
neuroscience, as well as auxiliary code that allows further improving and inspecting these 
designs and their respective results are still missing. 



Project goals: 

The goal of the GSoC project is to extend the functionality and inference options of the 
linear regression module in MNE-Python, as follows: 

1. The project aims at using NumPy and SciPy to expand the linear regression 
functions currently available in MNE. Here, our goal is to provide a set of functions for 
specifying and testing variants of the linear regression framework, that are commonly 
used by the neuroscience community. In addition, the project aims at improving the 
current MNE linear regression API to facilitate the interface with these tools 
and allow, at least to some extent, for a greater compatibility between more complex 
research questions and MNE’s linear regression module. For example, one of 
the project goals is to facilitate the implementation of a robust regression estimation 
algorithm, which constitutes an extension of the ordinary least squares approximation 
currently implemented in MNE and can be used to account for outliers or highly 
influential observations in a dataset. One further goal is to enable the specification of 
multi-level or hierarchical linear models, which are particularly appropriate when data 
are organised at more than one level of the experimental design (i.e., single-trial level 
vs. individuals or groups). 

2. Due to the importance of these methods for a broad spectrum of research questions, 
a growing selection of regression toolkits have been developed and are available as 
Open software (see for instance scikit-learn in Python https://scikit-
learn.org/stable/modules/linear_model.html, MASS https://cran.r-
project.org/web/packages/MASS/index.html, and lme4 https://cran.r-
project.org/web/packages/lme4/index.html in R to name some). One further goal of 
the project is to provide and API for interacting with these tools, allowing users for the 
exploration of more complex designs, such as those fitted to analyse multi-level 
problems. For this purpose, the project aims at using probabilistic programming tools 
such as Pymc3 (https://pymc3.readthedocs.io/en/latest/) to provide a set of examples 
for more complex statistical models, such as those that make use of Bayesian 
inference for determining relationships between predictors and response variables. 

3. In addition, the project aims at providing a set of functions for residual and parametric 
bootstrapping methods. These tools will allow users for a more general uncertainty 
estimation and inference in cases when linear models are regularized and standard 
mathematical procedures for inference are not available. 

4. Finally, the project aims at providing a platform for restructuring data sets to fit the 
format required by common linear regression modules, which will also be validated 
on open data resources, such as the LIMO 
(https://datashare.is.ed.ac.uk/handle/10283/2189) and LEMON datasets 
(http://fcon_1000.projects.nitrc.org/indi/retro/MPI_LEMON.html). 

Project Timeline: 

During the period of community bonding (May 6 to May 27, 2019) I will focus on making 
preparations for implementing alternative methods of estimation for linear and non-linear 
regression functionality and discussion of these with my mentors and other members of the 
MNE-community. In particular, I will focus on surveying what kind of model specifications are 
most common in the neuroscience community and what tools (e.g., NumPy, SciPy) can be 



used to extend the linear_regression function and the mne.stats module in MNE to 
be able to handle these model specifications. 

1. May 27 - June 9 (Week 1 & 2): 
● Conduct research on possible implementations of the linear regression 

framework that might be of particular interest for the project (e.g., robust 
regression) 

● Analyse possible ways, in which we can extend the linear_regression 
function to handle multiple ways of estimation of the linear regression 
parameters. Here, one option could be the addition of an estimator 
argument to linear_regression to activate fall-back functions that take 
care of the specific estimation steps. 

● Implementation: 
○ Write generic functions to simulate simple array-like data sets of 

neural time series data with multiple design elements (e.g., predictor 
variables) to be used for validation of new regression tools. 

○ Write a function to create and visualise a design matrix (see for 
instance EEG 1st  level in https://github.com/LIMO-EEG-
Toolbox/limo_eeg/wiki). Here, one option could be that the function 
accepts metadata from an epochs array in MNE and outputs a design 
matrix than can be fed to the linear_regression module in MNE 
to use for estimation. 

○ Use simulated data sets to create and visualise multiple design 
matrices. 

● API: 
○ Write code example on how to use metadata to create a visualise 

design matrices. 
○ Addition of an implementation for 

mne.simulation.simulate_epochs() for testing purposes. 
Should behave similar to mne.simulation.simulate_evoked(), 
see: 
https://martinos.org/mne/stable/generated/mne.simulation.simulate_ev
oked.html. 

○ One further possibility would be to add a 
mne.stats.make_design() function that takes a data argument, 
i.e., an array-like object of epoched data (e.g., such as returned by 
mne.Epochs()). In addition, the function should take a further 
argument design. The latter could be specified to be ‘metadata’, 
indicating the function should use the mne.Epochs.metadata to 
create the design matrix. Alternatively, a two dimensional array-like 
object (e.g., a pandas.DataFrame) can be provided. The function 
should return a two-dimensional numpy.array containing columns 
for each predictor in the design as well as an intercept. 

■ An additional function could be 
mne.stats.plot_design(), which makes use of the 



design matrix to returns a visualization of a design matrix as 
instance of matplotlib.figure.Figure. 

2. June 10 - June 23 (Week 3 & 4): 
● Test what measures could be best fitted to extend the functionality of 

linear_regression in MNE. For example, robust regression would need a 
robust estimator and control for outliers in dataset. One option could be to use 
the interquartile range of the data distribution (for instance using 
scipy.stats.iqr(); 
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.iqr.html). 

● Implementation: 
○ Preparation of code to allow a standardised input way into the linear 

regression module; e.g.: 
■ Extract data from the given structure and put it the right format 

(i.e., long format; for instance, using numpy.reshape(),see 
https://docs.scipy.org/doc/numpy/reference/generated/numpy.r
eshape.html or pandas.wide_to_long(), see 
https://pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.wide_to_long.html) to allow 
compatibility with multiple estimation methods. 

■ Get design matrix for experimental design (e.g., by calling a 
previously created make_design() function; see above). 

■ Check which estimation is desired and activate fall-back 
functions to carry out estimation. 

■ Return a standardised linear_regression object that 
contains the estimation results (e.g., betas) and can be used 
for further analysis (e.g., prediction of data). 

● API and Documentation: 
○ Addition of make_design() to MNE’s linear_regression 

function. 
○ Addition of function that checks if data is in the right format (i.e., long 

format) and rectifies the format if needed. 
○ Further possibility: Addition of estimator argument to 

linear_regression function to select the type of estimation 
algorithm to be used. 

○ Documentation of the progress as example code to test the additions 
on simulated data (e.g, implementation of newly created 
mne.simulation.simulate_epochs() in documented example). 

3. June 24 - July 21 (Week 5 - 8): 
○ Write code and fall-back functions for specific the estimation methods 

established in the previous weeks. 
○ Implementation: 

■ For robust regression, e.g.: 
1. Write code to find M-estimator, which will be used to lower the 

influence of outliers in the data set. 
2. Adjust regression residuals. 
3. Carry out matrix multiplication. 



■ Test functions. 
■ Debug. 
■ Start writing function for bootstrap of the regression results. 
■ Start formulation of a set of functions that allow interaction with other 

packages (e.g., Pymc3) for more complex models. 
○  API and documentation: 

■ Provide weekly updates on progress. 
■ Documentation. 
■ Start integration of linear regression API. 

● Extend OLS-approximation in linear_regression function 
to accept further estimation methods (e.g., add estimator 
argument). Here, the backend functions will be used for 
estimation. 

■ Start integration of boostrap functionality for linear_regression to 
MNE API. 

● E.g., add bootstrap argument for linear_regression 
function. 

■ Test and debug. 
■ Submission of code for first evaluation (June 24 - 28, 2019). 

4. July 22 - August 4 (Week 9 & 10): 
○ Engineering: 

■ Unit testing of the newly created functions. 
■ Validation on functions on open datasets. 

○ API and documentation: 
■ Improve and wrap-up documentation. 
■ Continue testing on open data sets and bring code to examples for 

users. 
■ Submission of code for second evaluation (July 22 - 26, 2019) 

5.  August 5 - August 18 (Week 11 & 12): 
○ Final evaluation and submission of code to google for final evaluation 

(August 19 - 26, 2019). 
○ Implementation & Engineering: 

■ Code clean up, fix bugs add comments and, if possible, fine tuning to 
improve functionality. 

■ Unit testing. 
■ Validation of the functions and testing on open datasets (e.g., the 

LIMO dataset). 
○ Interface & Documentation: 

■ Check integration in API, Improve and review documentation. 
■ Write examples with auxiliary code explaining implementation of the 

added functionality of linear_regression. 
  

Blog for this project: 

I will be writing blog post to document my progress on every stage of the GSoC timeline. In 
the blog, I will be sharing my ideas and suggestions made by my mentors. In the blog, I will 
write about difficulties and challenges I have encountered along the way, while discussing 



different strategies I tried to achieve a solution as well as advantages and disadvantages of 
differents ways of implementation. 

I didn't add a link to that blog to this proposal, because I don’t have much experience with 
technical blogging, so prior to creating one I would like to consult the MNE-community and my 
mentors on which blogging platform to choose. 
 
Why do I want to work on this project? 

The projects aims to build tools that I myself would like to implement in my research. I am 
currently working towards a PhD in the field of psychophysiological research and am 
interested in finding ways to describe individual variation in brain signals in different 
situational settings.  

For me, this also a great opportunity to collaborate with the MNE-community and expand my 
set of skills in the programming of Python and analysis of neural data. One thing I’m excited 
about is deepening my understanding of the actual steps necessary to specify and formulate 
good and useful models for data analysis.  

Benefits to the community: 

Many studies aim at finding relationships between environmental, personal features and 
patterns of brain activity. Without the ability to customise designs for statistical testing data 
analysis can lead to suboptimal conclusions. Extending MNE’s capabilities in the field of 
linear regression will allow more robust and versatile pipelines for data analysis that make 
adequate assumptions to deal with different types of models.  

In the past, many users have expressed interest for wider implementation capabilities of 
MNE in the field of linear regression. Thus, the project might motivate users to analyse their 
data with MNE and contribute by specifying designs for linear regression themselves. 

About me: 

https://github.com/JoseAlanis/cvlatex/blob/master/CV.pdf 

Contributions to MNE: 

https://github.com/mne-tools/mne-
python/pulls?q=is%3Apr+author%3AJoseAlanis+is%3Aclosed 


