
Enhance statistical inference using linear regression in MNE-Python

Proposal by José Carlos García Alanis
Mentors: D.E., J.S.

Introduction:

In statistics, linear regression is typically used for modelling relationships between one
(simple linear regression) or a series (multiple linear regression) of predictor variables and a
response variable. In particular, by determining the strength of the relationship between
predictors and response variables, linear regression algorithms can explain variation in the
response variable, which can be attributed to variation in the predictors, allowing the
identification of variables and/or subsets of data that contain relevant information about the
response variable.

Implementation in MNE:

To date, linear regression functionality in the premier toolbox for analysing neural time series
in Python, MNE, is capable of handling designs mostly characterised by the introduction of
categorical predictors, to explain variation in brain activity, based on ordinary least squares
estimation.

Basic overview of implementation of linear regression in MNE:

At the moment, the mne.stats.linear_regression() function (in the following referred
to as linear_regression for convenience) in MNE takes an MNE-python data structure
(e.g., an array-like object of epoched neural time series data) enriched with metadata about
the data to be regressed, such as of number of trials, sensors and time points for regression.
In addition, the linear_regression function takes a two-dimensional numpy.array
(number of observations/trials x number of predictors) as design_matrix argument. This
design matrix and the neural data are then forwarded by the linear_regression function
to NumPy’s numpy.linalg.lstsq() function to compute a least square solution of the
data given the design matrix. MNE’s linear_regression function then returns a
dictionary of named tuples (one for each predictor/column in the design matrix) containing
the regression coefficients and p-values among other results.

Even though this approach can be used to inspect relationships between a wide variety of
predictors and brain activity data, the limited options for specifying more complex regression
models, such as those based on robust and hierarchical estimation algorithms (see for
instance https://osf.io/hdxvb/) are currently preventing users from making use of the
functionality of MNE’s linear_regression at a larger scale, and from using more
elaborate regression tools commonly implemented in multiple scientific fields for which MNE
is relevant.

In addition, documentation with examples for commonly implemented designs in cognitive
neuroscience, as well as auxiliary code that allows further improving and inspecting these
designs and their respective results are still missing.

Project goals:

The goal of the GSoC project is to extend the functionality and inference options of the
linear regression module in MNE-Python, as follows:

1. The project aims at using NumPy and SciPy to expand the linear regression
functions currently available in MNE. Here, our goal is to provide a set of functions for
specifying and testing variants of the linear regression framework, that are commonly
used by the neuroscience community. In addition, the project aims at improving the
current MNE linear regression API to facilitate the interface with these tools
and allow, at least to some extent, for a greater compatibility between more complex
research questions and MNE’s linear regression module. For example, one of
the project goals is to facilitate the implementation of a robust regression estimation
algorithm, which constitutes an extension of the ordinary least squares approximation
currently implemented in MNE and can be used to account for outliers or highly
influential observations in a dataset. One further goal is to enable the specification of
multi-level or hierarchical linear models, which are particularly appropriate when data
are organised at more than one level of the experimental design (i.e., single-trial level
vs. individuals or groups).

2. Due to the importance of these methods for a broad spectrum of research questions,
a growing selection of regression toolkits have been developed and are available as
Open software (see for instance scikit-learn in Python https://scikit-
learn.org/stable/modules/linear_model.html, MASS https://cran.r-
project.org/web/packages/MASS/index.html, and lme4 https://cran.r-
project.org/web/packages/lme4/index.html in R to name some). One further goal of
the project is to provide and API for interacting with these tools, allowing users for the
exploration of more complex designs, such as those fitted to analyse multi-level
problems. For this purpose, the project aims at using probabilistic programming tools
such as Pymc3 (https://pymc3.readthedocs.io/en/latest/) to provide a set of examples
for more complex statistical models, such as those that make use of Bayesian
inference for determining relationships between predictors and response variables.

3. In addition, the project aims at providing a set of functions for residual and parametric
bootstrapping methods. These tools will allow users for a more general uncertainty
estimation and inference in cases when linear models are regularized and standard
mathematical procedures for inference are not available.

4. Finally, the project aims at providing a platform for restructuring data sets to fit the
format required by common linear regression modules, which will also be validated
on open data resources, such as the LIMO
(https://datashare.is.ed.ac.uk/handle/10283/2189) and LEMON datasets
(http://fcon_1000.projects.nitrc.org/indi/retro/MPI_LEMON.html).

Project Timeline:

During the period of community bonding (May 6 to May 27, 2019) I will focus on making
preparations for implementing alternative methods of estimation for linear and non-linear
regression functionality and discussion of these with my mentors and other members of the
MNE-community. In particular, I will focus on surveying what kind of model specifications are
most common in the neuroscience community and what tools (e.g., NumPy, SciPy) can be

used to extend the linear_regression function and the mne.stats module in MNE to
be able to handle these model specifications.

1. May 27 - June 9 (Week 1 & 2):
● Conduct research on possible implementations of the linear regression

framework that might be of particular interest for the project (e.g., robust
regression)

● Analyse possible ways, in which we can extend the linear_regression
function to handle multiple ways of estimation of the linear regression
parameters. Here, one option could be the addition of an estimator
argument to linear_regression to activate fall-back functions that take
care of the specific estimation steps.

● Implementation:
○ Write generic functions to simulate simple array-like data sets of

neural time series data with multiple design elements (e.g., predictor
variables) to be used for validation of new regression tools.

○ Write a function to create and visualise a design matrix (see for
instance EEG 1st level in https://github.com/LIMO-EEG-
Toolbox/limo_eeg/wiki). Here, one option could be that the function
accepts metadata from an epochs array in MNE and outputs a design
matrix than can be fed to the linear_regression module in MNE
to use for estimation.

○ Use simulated data sets to create and visualise multiple design
matrices.

● API:
○ Write code example on how to use metadata to create a visualise

design matrices.
○ Addition of an implementation for

mne.simulation.simulate_epochs() for testing purposes.
Should behave similar to mne.simulation.simulate_evoked(),
see:
https://martinos.org/mne/stable/generated/mne.simulation.simulate_ev
oked.html.

○ One further possibility would be to add a
mne.stats.make_design() function that takes a data argument,
i.e., an array-like object of epoched data (e.g., such as returned by
mne.Epochs()). In addition, the function should take a further
argument design. The latter could be specified to be ‘metadata’,
indicating the function should use the mne.Epochs.metadata to
create the design matrix. Alternatively, a two dimensional array-like
object (e.g., a pandas.DataFrame) can be provided. The function
should return a two-dimensional numpy.array containing columns
for each predictor in the design as well as an intercept.

■ An additional function could be
mne.stats.plot_design(), which makes use of the

design matrix to returns a visualization of a design matrix as
instance of matplotlib.figure.Figure.

2. June 10 - June 23 (Week 3 & 4):
● Test what measures could be best fitted to extend the functionality of

linear_regression in MNE. For example, robust regression would need a
robust estimator and control for outliers in dataset. One option could be to use
the interquartile range of the data distribution (for instance using
scipy.stats.iqr();
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.iqr.html).

● Implementation:
○ Preparation of code to allow a standardised input way into the linear

regression module; e.g.:
■ Extract data from the given structure and put it the right format

(i.e., long format; for instance, using numpy.reshape(),see
https://docs.scipy.org/doc/numpy/reference/generated/numpy.r
eshape.html or pandas.wide_to_long(), see
https://pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.wide_to_long.html) to allow
compatibility with multiple estimation methods.

■ Get design matrix for experimental design (e.g., by calling a
previously created make_design() function; see above).

■ Check which estimation is desired and activate fall-back
functions to carry out estimation.

■ Return a standardised linear_regression object that
contains the estimation results (e.g., betas) and can be used
for further analysis (e.g., prediction of data).

● API and Documentation:
○ Addition of make_design() to MNE’s linear_regression

function.
○ Addition of function that checks if data is in the right format (i.e., long

format) and rectifies the format if needed.
○ Further possibility: Addition of estimator argument to

linear_regression function to select the type of estimation
algorithm to be used.

○ Documentation of the progress as example code to test the additions
on simulated data (e.g, implementation of newly created
mne.simulation.simulate_epochs() in documented example).

3. June 24 - July 21 (Week 5 - 8):
○ Write code and fall-back functions for specific the estimation methods

established in the previous weeks.
○ Implementation:

■ For robust regression, e.g.:
1. Write code to find M-estimator, which will be used to lower the

influence of outliers in the data set.
2. Adjust regression residuals.
3. Carry out matrix multiplication.

■ Test functions.
■ Debug.
■ Start writing function for bootstrap of the regression results.
■ Start formulation of a set of functions that allow interaction with other

packages (e.g., Pymc3) for more complex models.
○ API and documentation:

■ Provide weekly updates on progress.
■ Documentation.
■ Start integration of linear regression API.

● Extend OLS-approximation in linear_regression function
to accept further estimation methods (e.g., add estimator
argument). Here, the backend functions will be used for
estimation.

■ Start integration of boostrap functionality for linear_regression to
MNE API.

● E.g., add bootstrap argument for linear_regression
function.

■ Test and debug.
■ Submission of code for first evaluation (June 24 - 28, 2019).

4. July 22 - August 4 (Week 9 & 10):
○ Engineering:

■ Unit testing of the newly created functions.
■ Validation on functions on open datasets.

○ API and documentation:
■ Improve and wrap-up documentation.
■ Continue testing on open data sets and bring code to examples for

users.
■ Submission of code for second evaluation (July 22 - 26, 2019)

5. August 5 - August 18 (Week 11 & 12):
○ Final evaluation and submission of code to google for final evaluation

(August 19 - 26, 2019).
○ Implementation & Engineering:

■ Code clean up, fix bugs add comments and, if possible, fine tuning to
improve functionality.

■ Unit testing.
■ Validation of the functions and testing on open datasets (e.g., the

LIMO dataset).
○ Interface & Documentation:

■ Check integration in API, Improve and review documentation.
■ Write examples with auxiliary code explaining implementation of the

added functionality of linear_regression.

Blog for this project:

I will be writing blog post to document my progress on every stage of the GSoC timeline. In
the blog, I will be sharing my ideas and suggestions made by my mentors. In the blog, I will
write about difficulties and challenges I have encountered along the way, while discussing

different strategies I tried to achieve a solution as well as advantages and disadvantages of
differents ways of implementation.

I didn't add a link to that blog to this proposal, because I don’t have much experience with
technical blogging, so prior to creating one I would like to consult the MNE-community and my
mentors on which blogging platform to choose.

Why do I want to work on this project?

The projects aims to build tools that I myself would like to implement in my research. I am
currently working towards a PhD in the field of psychophysiological research and am
interested in finding ways to describe individual variation in brain signals in different
situational settings.

For me, this also a great opportunity to collaborate with the MNE-community and expand my
set of skills in the programming of Python and analysis of neural data. One thing I’m excited
about is deepening my understanding of the actual steps necessary to specify and formulate
good and useful models for data analysis.

Benefits to the community:

Many studies aim at finding relationships between environmental, personal features and
patterns of brain activity. Without the ability to customise designs for statistical testing data
analysis can lead to suboptimal conclusions. Extending MNE’s capabilities in the field of
linear regression will allow more robust and versatile pipelines for data analysis that make
adequate assumptions to deal with different types of models.

In the past, many users have expressed interest for wider implementation capabilities of
MNE in the field of linear regression. Thus, the project might motivate users to analyse their
data with MNE and contribute by specifying designs for linear regression themselves.

About me:

https://github.com/JoseAlanis/cvlatex/blob/master/CV.pdf

Contributions to MNE:

https://github.com/mne-tools/mne-
python/pulls?q=is%3Apr+author%3AJoseAlanis+is%3Aclosed

