
Generic function support for LPython 1

Generic function support for LPython
1. Abstract
Generics are a common functionality found in statically typed programming languages, allowing easier
maintenance of programs which differ only in their types. However, generics are not yet supported in the
statically-typed LPython. Generics in LPython can be implemented similar to the approach taken by C++
templates. We can regard generic functions as functions with type parameters, whose parameters are
made concrete and checked by function calls on AST level.

The end result of the project would be generic function support for LPython with option for specialization,
along with sufficient integration tests and documentations.

2. Project background

2.1. LPython
LPython is an ahead-of-time compiled, statically-typed subset of the Python programming language.
Programs written in LPython are parsed into ASTs, then compiled into abstract semantic representations,
before compiled into LLVM codes.

In its current state, LPython requires all functions to be strongly typed. Thus, unlike Python, we must
define an addition function as follows.

def add(a: i32, b: i32) -> i32:
 return a + b

Where a: i32 and b: i32 denote that the parameter a and b are typed as 32-bit integer and -> i32
denotes that the return type of function add is also a 32-bit integer.

2.2. Generics
Since functions are strongly typed, given different argument and return types, different functions have to
be defined in LPython. For example, if we require addition functions for f32 (32-bit float) and c32 (32-bit
complex), we end up with the following functions.

@overload
def add(a: i32, b: i32) -> i32:
 return a + b

@overload
def add(a: f32, b: f32) -> f32:
 return a + b

@overload
def add(a: c32, b:c32) -> c32:
 return a + b

This is not user-friendly, as it requires users to write multiple identical functions and at the same time
makes maintenance of the program hard. With generics, we can rewrite the functions in Python 3
generics style into:

Generic function support for LPython 2

T = TypeVar('T')
def add(a: T, b: T) -> T:
 return a + b

Where T represents a type parameter that can be parameterized by LPython’s native types. Then, when
the user provides two different uses of the function, such as add(1, 1) and add(1.0, 1.0) , the appropriate
functions will be determined in compile time.

3. Implementation

3.1. General idea
The generics functionality will be treated as a pass after the program is parsed into an AST and before the
AST is converted into an ASR. This corresponds to adding a function that takes an AST and produces a
new AST in between calling parse_python_files and python_ast_to_asr inside the function
compile_python_to_object_file in lpython.cpp . Generics will require a separate module in the compiler.

3.2. Plan
The implementation follows Python 3 syntax for typing, treating type variables similar to variables carrying
values. To explain the implementation, I refer back to the add function in the Project Background section.

3.2.1. Syntax support
To have generics, we need syntax support for declaring type variables. We need to implement the built-in
function TypeVar . In the generics pass over the AST, for each occurrence of TypeVar , we store the new
type variable in a data structure that can be accessed by function definitions. By declaring

T = TypeVar('T')

Functions underneath it now can declare T as the type of their signatures.

3.2.2. Parameter checks on functions
For each function with generic types found during generics pass, we have to implement check on its
parameters and return types. With the function definition

def add(a: T, b: T) -> T:
 return a + b

We check whether T is a valid type parameter by referring to the data structure that carries declared type
variables.

3.2.3. Type checking function calls
Next would be to implement type check on function calls and instantiation of generic functions’ type
parameters. For example, given the following function call add .

add(1,1)

https://docs.python.org/3/library/typing.html

Generic function support for LPython 3

We have to check whether the arguments match the function’s signature. In this case, add requires that
both parameters have the same type T . add(1, 1) passes two identical values 1 (assumed to be i32). If
we replace T with i32 , then the arguments pass.

Furthermore, if we have a nested function call

add(add(1,1), 1) # nested function call

We can infer the type of the first argument add(1,1) in this process because we can replace T with i32 .

However, the following function call

add(1.0, 'a') # calling with mix typed arguments

does not pass the check because we cannot resolve what T is.

3.2.4. Tracking function overloadings
For each generic function call that passes the check, we also need to track the substitution for the type
parameters. For example, suppose we have two function calls add with different arguments

function calls

add(1,1) # T is replaced by i32
add('a','b') # T is replaced by str

The generics pass assigns to the generic function add a different mapping for T to both i32 and str .

3.2.5. Generating non-generic functions
The final step is to replace the generic functions in the AST with non-generic functions. For example,
since we already have two mapping for T , namely i32 and str . We can then generate non-generic add
functions with these mappings. Using the overloading feature already available in LPython, we can
generate the following two functions

resulting AST

@overload
def add(a: i32, b: i32) -> i32:
 return a + b

@overload
def add(a: str, b: str) -> str:
 return a + b

add(1,1)
add('a','b')

3.2.6. Support for specialization
We can also add support for specialization. Suppose the implementation for the function is different for
each type, we can introduce a decorator @specialization for functions implemented for specific types. For

Generic function support for LPython 4

example

T = TypeVar('T')

def minus(a: T) -> T:
 return -a

@specialization
def minus(a: bool) -> bool:
 return !a

When minus is called, the specialized functions are prioritized before attempting to use the generic
function.

4. Timeline
June 13 - 19
Work on adding the built-in function TypeVar and parsing checks for TypeVar .

June 20 - 26
Implement function parameter checks based on declared type variables.

June 27 - July 17
Implementing type checks on generic function calls. The typing visitor goes through function calls and
instantiate type parameters according to the arguments given. If unmatching types were found, then the
program can return an error.

July 18 - 31
Implement the non-generic functions code generation in AST. A code generating visitor can remove
TypeVar declarations and generate functions based on how the parameters were instantiated by function
calls.

August 1 - 7
Implement specialization support.

August 8 - 21
Testing, fixing bugs, evaluate performance.

August 22- September 28
Further tests, write up documentations.

August 29 - September 4
Write up final report

