
Google Summer Of Code 2021
Project Proposal

Scrapy: Creating a MIME Sniffing Library

● Name : Akshay Sharma
● School : University Of Florida, Gainesville, United States
● Degree Program : Senior Certificate Program in Computer & Information

Science & Engineering
● Time Zone : Indian Standard Time (+5.30 GMT)
● Github : akshaysharmajs

Project Information:

Title: Creating a MIME Sniffing Library

Parent organization - PYTHON SOFTWARE FOUNDATION

Sub-org name - Zyte/Scrapy

Project Abstract:

This project is about creating a python library that implements the complete MIME
Sniffing Standards.
Project Issue: https://github.com/scrapy/scrapy/issues/4240

https://github.com/AKSHAYSHARMAJS
https://mimesniff.spec.whatwg.org/
https://mimesniff.spec.whatwg.org/
https://github.com/scrapy/scrapy/issues/4240

Detailed Description:

MIME stands for “Multipurpose Internet Mail Extensions.” This method is used to
examine the type of content in a web request or response to determining the content’s
format.

Content-Type response header for an HTML page from google.com

Usually, we can determine a resource’s MIME type by looking at the Content-Type
response header in an HTTP response but some developers set values for Content-Type
headers that are not suitable for the response’s content. This is where MIME Sniffing
comes into play to determine the actual MIME type by analyzing the response’s content.

At present, Scrapy uses the basic inbuilt python library ‘mimetypes’ implemented inside
the file ‘responsetypes.py’ to determine the MIME type of file and handle it accordingly.
However, MIME types currently being recognized are very limited and some of the
responses are misinterpreted. For instance, the above-mentioned issue describes that
Scrapy recognizing a pdf file as a TextResponse whereas it should be an
application/pdf.

Misinterpreting MIME types can cause bugs while using Scrapy frameworks in projects.
Therefore, we should implement the python library that can handle all the MIME sniffing
standards.

https://docs.python.org/3/library/mimetypes.html
https://github.com/scrapy/scrapy/blob/master/scrapy/responsetypes.py
https://github.com/scrapy/scrapy/issues/4240

This library will follow the standards described in https://mimesniff.spec.whatwg.org/.
We can implement the library from scratch or on top of some of the libraries that
support MIME sniffing like ‘python-magic’, ‘mimesniff’, ‘sniffpy’ but in the end, we should
have the best possible implementation that works the same way as any browser uses
the sniffing algorithm.

Deliverables and Implementation:

The implementation language will be Python and all codes will accompany detailed
documentation and testing.

By the end of this project, I propose to deliver the following:

1. Following MIME sniffing standards
● Standards will be followed to imitate the behavior of web-browsers’ sniffing

algorithms
● The library will follow the methods described in section 5 to parse and handle the

MIME types are described in section 4.
● The library will also follow the pattern matching just as mentioned in section 6 to

estimate the response content.
● The library will allow computing any unknown MIME type which is crucial to

implement as Scrapy can encounter many unknown types. Different methods to
identify the unknown type are described in section 7.

● The library will implement context-specific sniffing algorithms in a particular
context method of which are described in section 8.

2. Reusing existing libraries.
● The reason to choose an external library is the ease of debugging and

extensibility
● Most of the MIME types can be identified using the python-magic library. python

-magic will mainly be used for the content body sniffing. These can be easily
implemented using the grammar proposed by python-magic, otherwise, it will be
hard-pressed to reinvent a similarly extensible parser in our library.

● We can also use python-magic for the cases not supported by standards.
● We can allow users to use a more customizable framework rather than a rigid

custom parser like mimesniff by wrapping the python-magic for Scrapy.

https://mimesniff.spec.whatwg.org/
https://pypi.org/project/python-magic/
https://pypi.org/project/mimesniff/
https://pypi.org/project/sniffpy/

3. Sniffing under ‘X-Content-Type-Options=nosniff’
● The X-Content-Type-Options is an HTTP header that is used by servers to instruct

browsers not to perform MIME sniffing. With this header, all the algorithms
required to compute the MIME type described in the standard will be aborted and
the MIME type given by the server will be the computed MIME type.

● Still, we can try to estimate the MIME type through the information mentioned in
headers or by analyzing the file endings. This needs more discussion with
mentors.

4. Performance issues
● The new implementation of the sniffing library can affect the performance of

Scrapy making it a little bit slower. So to deal with this, we can allow a setting like
“SET_SNIFFING” which can allow users to enable or disable the use of the
sniffing library while scraping as per the requirement.

5. If time permits, integrating the sniffing library with Scrapy.

Code Contribution:

Issue PR Description Status

#4332 #4338 Small Documentation Fix Merged

#4393 #4403 enable ANSI color (instead of ANSI color codes) in
the Windows terminal

Merged

#4643 #4646
allowing to run .pyw files

Merged

#4715 #4736
Windows pip installation guide

Merged

#4946 #4953 adding variable type values support to
'scrapy.FormRequest()'

Changes
Approved

#4892 Update all links in the installation guide
Solved and

closed

Timeline :

Before Community Bonding (April 14, 2021 - May 17, 2021)
● Contribute more pull requests to Scrapy and Keep in touch with mentors.
● Read more about MIME Sniffing and analyze existing implementations

Community Bonding (May 18, 2021 - June 7, 2021)

https://github.com/scrapy/scrapy/issues/4332
https://github.com/scrapy/scrapy/pull/4338
https://github.com/scrapy/scrapy/issues/4393
https://github.com/scrapy/scrapy/pull/4403
https://github.com/scrapy/scrapy/issues/4643
https://github.com/scrapy/scrapy/pull/4646
https://github.com/scrapy/scrapy/issues/4715
https://github.com/scrapy/scrapy/pull/4736
https://github.com/scrapy/scrapy/issues/4946
https://github.com/scrapy/scrapy/pull/4953
https://github.com/scrapy/scrapy/issues/4892

● Actively participate in all discussions related to the issue
● Setup development environment
● Contribute to more bug fixes/patches
● Analyze the existing implementation of sniffing algorithm by popular open-source

web browsers like Mozilla
● Setup blog for GSOC 2021

Week 1 (June 8, 2021 - June 14, 2021): Implementation of parsing and handling MIME
standards mentioned in sections 4 and 5.

Week 2 (June 15, 2021 - June 21, 2021): Getting code reviewed for phase I evaluation.
Perform fixes after getting code reviewed.

Week 3 (June 22, 2021 - June 28, 2021): Complete any leftover implementation of
sections 4 and 5. Writing relevant documentation and full proof testing of the
implemented code.

Week 4 (June 29, 2021 - July 5, 2021): Implement section 6 using python-magic

Week 5 (July 6, 2021 - July 12, 2021): Implement section 7 using python-magic

Week 6 (July 13, 2021 - July 19, 2021): Testing and documenting the implemented
code

Week 7 (July 20, 2021 - July 26, 2021): Implementing context-specific sniffing.

Week 8 (July 27, 2021 - August 2, 2021): Discussion with mentors for the cases not
supported by standards and implementing it.

Week 9 (August 2, 2021 - August 8, 2021): If time permits, integrating the MIME library
into the Scrapy framework

Week 10 (August 9, 2021 - August 15, 2021): Complete any leftover tests or
documentation

Final Week (August 16, 2021 - August 23, 2021): Get code reviewed and perform fixes.
Wrap up, complete leftover work, submit the final report and code.

Benefits to Scrapy Community:

● Using MIME sniffing with complete implementation of standards will give Scrapy
framework an edge over other popular web-scraping frameworks.

● Scrapy can allow its users a more diverse and easier analysis of the content they
are scraping.

● Many issues currently on the list can be resolved

About me:

I am an undergrad student pursuing a certificate program in Computer & Information
Science & Engineering at the University Of Florida, Gainesville, United States. I have four
years of programming experience, particularly in Python, JavaScript and C++.

I have studied courses on Algorithms and Data Structures, Computer Networks, Artificial
Intelligence, Information Retrieval, Web Semantics, and Development during my
freshmen, sophomore, and junior years at Jaypee Institute of Information Technology,
Noida, India. Currently, in my senior year at the University of Florida, I am studying
courses on Analysis Of Algorithms, Computer Network Fundamentals, Intro to Data
Science, and Operating Systems.

I have also done a variety of projects in areas like web development, machine learning,
etc. Some of my major projects are:

● Unix based Korn shell using flex and bison
● Fake news detection using Scrapy and machine learning
● Price Monitoring Tool using Scrapy
● Subjective Answer Evaluation using Machine learning

Outside of academics, I’ve been participating in hackathons and love to hone my coding
skills on platforms like Leetcode, Codechef, HackerRank.

https://github.com/scrapy/scrapy/issues

Why me ?:

I have been using Scrapy for scraping web data for the past few years as it's easier to
use and has a better performance compared to other frameworks like Selenium,
Pyspider. I have used Scrapy to scrape a large news dataset and for scraping prices of
products from e-commerce websites. Over the last year, the Scrapy community has
helped me a lot to grow as a passionate open-source contributor.

I believe I aptly suit this project as I have the required skills needed to be successful in
this project. Also, I have been contributing to Scrapy for a while now which has made
me quite familiar with the workflow of Scrapy’s codebase and architecture, so I won’t
need to spend any more time to familiarize myself with the codebase, which would be
beneficial as we have a shorter timeline this year.

Furthermore, this project would be an amazing opportunity for me to gain an experience
of working on a high-impact real world project improving and learning new skills through
continuous code-reviews from such highly experienced and passionate developers in
the community.

Availability & Other Commitments:
● I would be able to devote approx 35-40 hours per week to GSOC and during this

period, I intend to stay in touch with mentors keeping them up to date with my
daily progress. If required, I am also willing to put in a few more hours in order to
meet the deadlines.

● I don’t have any other commitments and I have only applied to Scrapy in GSOC
2021.

