
Implementation of Strings
functionalities, interactivity,

and parser benchmark

Name: Abdelrahman Khaled Fouad
University: Mansoura university
Github: Abdelrahman-Kh-Fouad
Gitlab: Abdelrahman-kh-fouad

LinkedIn: Abdelrahman-Kh-Fouad
Time Zone: Cairo, Egypt (UTC +2)

https://github.com/Abdelrahman-Kh-Fouad
https://gitlab.com/Abdelrahman-kh-fouad
https://www.linkedin.com/in/abdelrahman-kh-fouad/

About me:

● I’m a Computer Science student at the Faculty of Computers and
Information, Mansoura University - Egypt (fourth year).

● I have completed the basic courses in Computer Science (Algorithms
and data-structure, Computer Architecture, Networks, etc.) this
semester; also, I have a compiler design course.

● I am interested in competitive programming, practicing problem-solving,
and participating in competitions.

Background and experience:

● I’m coding in C++, python, and a little java; mainly, I’m using Linux
(Kubuntu).

● My experience in C++ was in several projects i made by SMFL and
problem-solving.

● I have some experience in web development from my 2021 internship,
which made me familiar with flask apps and vue.js, and a little of
Kubernetes.

My projects:

● Contained C++:
○ First two projects of CS106x stanford (programming abstraction

in C++) using (C++ ,SMFL):
■ Fauxtoshop
■ GameOfLife

○ Some of my solutions of problems(different judges)

● Contained python:
○ Vjudge-Solution: get all solutions on vjudge and organize them.
○ Movies: pypt app to search for movies rate and add some

movies to favorites.
○ INI-Parser: parser and manipulator for ini files.
○ TODO: todo website is written in vue.js and flask app.

https://gitlab.com/Abdelrahman-kh-fouad/CS106x/-/tree/main/Fauxtoshop
https://gitlab.com/Abdelrahman-kh-fouad/CS106x/-/tree/main/GameOfLife
https://github.com/Abdelrahman-Kh-Fouad/ProblemSolving
https://github.com/Abdelrahman-Kh-Fouad/GetSolutionsFormVjudge
https://github.com/Abdelrahman-Kh-Fouad/pyqtMovies
https://github.com/Abdelrahman-Kh-Fouad/Ini-parser
https://github.com/Abdelrahman-Kh-Fouad/ToDo

● Others:
○ Pac-man clone: I implemented a maze generator and shortest

path for enemies(Java, Android SDK).

Open source experience:

I have experience in open-source contributions.
● Pydatastructs: I implemented 2d BIT and generalized BIT(Binary

Indexed Tree) in #495 (Not merged yet).

Availability and time zone:

In the first three weeks of the code period, I will be in my exams to
contribute work in other weeks. I will be working only on the project during
the summer, communicating with mentors regularly, and being available
full-time (35 hours per week).

My time zone is (UTC +2 Cairo).

Contributions to Lpython:
● Merged :

○ Add max() , min() #335 : implement built_in function max and min
to get maximum of two, three elements or minimum of two, three
elements.

○ Change doctest.h to newer version(Ondřej Čertík idea) #309
● Opened:

○ –time-report implementation #359: time report option in lpython to
gave a time report in each stage.

○ Parser benchmark #394: benchmark script to run timers for
multiple files.

Motivation:

https://github.com/mmabas77/AI-Project-3-CS
https://github.com/codezonediitj/pydatastructs
https://github.com/codezonediitj/pydatastructs/pull/495/
https://github.com/lcompilers/lpython/pull/335
https://github.com/lcompilers/lpython/pull/309
https://github.com/lcompilers/lpython/pull/359
https://github.com/lcompilers/lpython/pull/394

i’m always interest in programming language and some concepts of
computational theory, so lpython give me a big opportunity to contribute in
python compiler, this powerful language, and to take adventure to learning
compilers in depth.

Project Idea:
The project idea is to add two features from ASR and LLVM levels and benchmark
for the new parser.

● Implementing strings functionality: this feature is mainly in asr and llvm
levels; the main idea here is to add string functionalities like:

○ Concatenating.
○ Passing to and from functions.
○ Lists of strings.
○ Any function that mentors needs for other features.

(functionalities mentioned by the mentor: Ondřej Čertík)
So I will learn llvm ir for (asr to llvm stage) and learn about (ast to asr
stage), and I already have a little experience with ast to asr stage from
implementing max() and min() functions.

Recently mentors have decided to implement intrinsic functions with a new
approach, and it will make it easy to handle problems of strings functions
So I will learn llvm, and if there is anything related to strings while
implementing this new approach, I will make it.

After I learn llvm I will add the main functionalities that the mentors discussed
and decided to implement during the Bonding period.

● Adding interactive option: interactive option is the mood of the compiler
that evaluates line by line in an interactive way with the user.
Like every python interpreter like ipython, interactive is very useful for
users; it makes it easy for a programmer to see results in an immediate
moment, and it is used by data scientists allows to see results periodically,
so it’s very important to implement in lpython.

Interactivity implemented already in LFortran, and we already have
infrastructure from Lfortran and utilities like tpl dir that contain terminal

https://github.com/lcompilers/lpython/issues/298
https://gitlab.com/lfortran/lfortran/-/merge_requests/1700
https://gitlab.com/lfortran/lfortran/-/merge_requests/1700
https://github.com/lcompilers/lpython/issues/273#issuecomment-1099462717
https://gitlab.com/lfortran/lfortran/-/tree/master/src/bin/tpl

functionalities and some functions that print results in the terminal; also
lpython evaluator is ready, I will add anything missing in the evaluator and
implement the whole interactive mood in src/bin/lpython.cpp .

● Make parser benchmark: there is a new parser now that is being
implemented, and we want to estimate its speed in comparison to the
older parser(python parser).

The first thing I must implement is a timer in the parsing stage in lpython
to estimate the time that takes a new parser; in Lfortran there is an option
–time-report that shows time results of every stage (reading-file, parsing,
ast to asr, and asr to llvm), so I should make this time report also in
Lpython, and with this, we can use this report to know parser time, and
users could see this report if they choose –time-report option.

And I have already implemented it on this pull request.
The next step is making a benchmark itself, and it will compare files and
estimate their parsing time; the workflow here will be the same as the
tests workflow, we will have a dir we put on it files we want to compare,
and it will run them all and compare times, and the output will be results
graph like this:

And the basic implementation for benchmark in this pr.

Time period :

● Community Bonding Period (May 20, 2022 - June 12, 2022)
○ Get to understand the codebase. Specifically, llvm ir part.
○ Discuss the ideas, their difficulties, and ways to solve them with mentors

and their recommendations for suitable strings functionalities to be
implemented and finalize the time plan.

https://github.com/lcompilers/lpython/issues/344
https://github.com/lcompilers/lpython/issues/298
https://github.com/lcompilers/lpython/pull/359
https://github.com/lcompilers/lpython/pull/394

○ I’ll start coding in the middle of this period if the time is more than
required.

● Coding phase (June 13, 2022 - September 04, 2022)

● Week 1 - 3 (June 13 - July 3)
○ In this period, the final exams of the spring will start. This is not

official since the semester agenda is not yet posted. In this period,
it’ll not be very easy to actively contribute to the project.
Nonetheless, I’ll be present on the zulip discussing the project and
keeping up with the updates.

● Week 4 - 6 (July 4 - July 24)
○ I continue learning llvm and starting to implement some string

functionalities.
○ I will try to fix any functions doesn’t complete because of strings

functionalities.
○ Finish basic benchmark parser with basic output graph.

● Week 7 - 9 (July 25 - August 14)
○ I will finish strings functionalities that I discuss with mentors

during the Bonding period
○ I will finish the benchmark and make generalize for a lot of

options for comparison if the project needs this in the future.

● Week 10 -12(August 15 - September 4)
○ I will bring the infrastructure and code we will use for interactivity

from Fortran.
○ I will add necessary features to the evaluation methods

● Week 13 (September 5 - September 11)
○ I will be finalizing my work and adding all things in docs or (make

comments and articles to describe my work and help people in the
future).

If I have a chance to start coding during the bonding period, I will
start To make up for the exams period.

If time permits or if I’ve finished earlier, the rest of the time should be
spent solving issues and continuing the parser benchmark if it is not
completed yet.

Post Gsoc:
I like the project, and I will continue to contribute anything to it; and if there is a
regular opportunity to contribute regularly in lpython, Fortran compilers, I will
apply on it.
And if these projects will be in gsoc next year will apply to be a contributor.

