
Mission Support System: Mission Support

Collaboration Improvements

About Me
Name: Tanish Grover (Bitbucket: Tanish Grover, Github: Tanish0019, mss-devel.slack.com: Tanish
Grover)
University info:

University Name: Delhi Technological University
Major: Computer Engineering
Current Year: 3rd Year
Expected Graduation date: May 2021
Degree: Bachelor of Technology

Time Zone: Indian Standard Time (GMT + 5:30 hours)

Code Contribution:
I have constantly been working with MSS mentors, discussing issues, bugs and features to

improve MSS and have made substantial contributions to MSS, gaining more understanding of

the code base with each contribution. The following is the list of PRs I have worked on:

● https://bitbucket.org/wxmetvis/mss/pull-requests/814/fixes-issue-553-add-user-accoun

t-delete/diff

● https://bitbucket.org/wxmetvis/mss/pull-requests/803/fixes-error-in-opening-topview-

wms-control/diff

● https://bitbucket.org/wxmetvis/mss/pull-requests/800/fixes-issue-549-tests-failing-on-

osx/diff

● https://bitbucket.org/wxmetvis/mss/pull-requests/799/fixes-issue-517-add-json-suppor

t-for-bulk/diff

● https://bitbucket.org/wxmetvis/mss/pull-requests/798/fix-test_registration-failing/diff

● https://bitbucket.org/wxmetvis/mss/pull-requests/785/fix-for-issue-537-and-484/diff

● https://bitbucket.org/wxmetvis/mss/pull-requests/797/fixes-issue-538-revoke-permission-
not/diff

● https://bitbucket.org/wxmetvis/mss/pull-requests/787/fixes-issue-539-handling-project

/diff

● https://bitbucket.org/wxmetvis/mss/pull-requests/784/fix-mscolab-test_save_fetch-in-

develop/diff

https://bitbucket.org/%7Bed134807-0d1f-40c8-96d7-7428b16f682e%7D/
https://github.com/Tanish0019
http://dtu.ac.in/
https://bitbucket.org/wxmetvis/mss/pull-requests/814/fixes-issue-553-add-user-account-delete/diff
https://bitbucket.org/wxmetvis/mss/pull-requests/814/fixes-issue-553-add-user-account-delete/diff
https://bitbucket.org/wxmetvis/mss/pull-requests/803/fixes-error-in-opening-topview-wms-control/diff
https://bitbucket.org/wxmetvis/mss/pull-requests/803/fixes-error-in-opening-topview-wms-control/diff
https://bitbucket.org/wxmetvis/mss/pull-requests/800/fixes-issue-549-tests-failing-on-osx/diff
https://bitbucket.org/wxmetvis/mss/pull-requests/800/fixes-issue-549-tests-failing-on-osx/diff
https://bitbucket.org/wxmetvis/mss/pull-requests/799/fixes-issue-517-add-json-support-for-bulk/diff
https://bitbucket.org/wxmetvis/mss/pull-requests/799/fixes-issue-517-add-json-support-for-bulk/diff
https://bitbucket.org/wxmetvis/mss/pull-requests/798/fix-test_registration-failing/diff
https://bitbucket.org/wxmetvis/mss/pull-requests/785/fix-for-issue-537-and-484/diff
https://bitbucket.org/wxmetvis/mss/pull-requests/797/fixes-issue-538-revoke-permission-not/diff
https://bitbucket.org/wxmetvis/mss/pull-requests/797/fixes-issue-538-revoke-permission-not/diff
https://bitbucket.org/wxmetvis/mss/pull-requests/787/fixes-issue-539-handling-project/diff
https://bitbucket.org/wxmetvis/mss/pull-requests/787/fixes-issue-539-handling-project/diff
https://bitbucket.org/wxmetvis/mss/pull-requests/784/fix-mscolab-test_save_fetch-in-develop/diff
https://bitbucket.org/wxmetvis/mss/pull-requests/784/fix-mscolab-test_save_fetch-in-develop/diff

● https://bitbucket.org/wxmetvis/mss/pull-requests/781/fix-mscolab-osx-test-fails-fixes-i

ssue-531/diff

● https://bitbucket.org/wxmetvis/mss/pull-requests/777/mscolab-save-fix-fixes-534/diff

● https://bitbucket.org/wxmetvis/mss/pull-requests/776/fixes-issue-533-project-being-un

selected/diff

Project Information:

Sub-org name: Mission Support System (MSS)

Project Abstract:
The Mission Support system is an application for scientists in the field of atmospheric science to
help them simplify the process of planning a scientific flight in which parameters of the
atmosphere are measured. It allows users to map out the possible flight paths while taking into
consideration different meteorological data and forecasted parameters and viewing them along
possible regions of the flight path. In Google Summer of Code 2019, the Mission Support
Collaboration(mscolab) module was developed which allowed real-time collaboration and
editing of flight paths of a project. However, there are some key features which are currently
missing from the mscolab module. I propose to work on the following features and
improvements to Mission Support Collaboration

1. Local/Offline Flight Path Editing: There are many instances where a user might want
to test out his/her own changes to the flight path locally without changing the path on the
server. Another scenario is that the user has a slow network connection at the flight
campaign location which is a common problem. Both these situations require a method
for the users to be able to make changes to the flight path locally and then be able to
compare and merge it with the flight path on the server later.

2. Chat Service Improvements: Currently, a chat service exists to help users
communicate while working on a project in Mscolab. However, sending plain text
messages is the only option available to the users at present. I would like to add some
important features to the chat service to improve communication between collaborators.
These features are - markdown support, ability to send images, searching through
messages, ability to delete messages and replying to a specific message.

3. Admin Dashboard: There can be hundreds of users who need to be added to a project.
Currently, the only way to add a user to a project is through a simple text box which
takes one username/email at a time. To solve this, a new admin window needs to be
developed. This admin window would allow the project creator and admins to easily and
quickly add/remove users from the project and modify their access levels.

https://bitbucket.org/wxmetvis/mss/pull-requests/781/fix-mscolab-osx-test-fails-fixes-issue-531/diff
https://bitbucket.org/wxmetvis/mss/pull-requests/781/fix-mscolab-osx-test-fails-fixes-issue-531/diff
https://bitbucket.org/wxmetvis/mss/pull-requests/777/mscolab-save-fix-fixes-534/diff
https://bitbucket.org/wxmetvis/mss/pull-requests/776/fixes-issue-533-project-being-unselected/diff
https://bitbucket.org/wxmetvis/mss/pull-requests/776/fixes-issue-533-project-being-unselected/diff
https://bitbucket.org/wxmetvis/mss/wiki/GSOC2020/Overview

Project Description:

Mission Support System Introduction:
Mission Support System is made up of the following major components:

1. MSUI: Built using the PyQt5 framework, MSUI is the client-side or GUI of the

application. The GUI includes different views so that researchers can analyse the flight

path from different perspectives and work on the route accordingly. It displays maps

served using the MSWMS server on which researchers can mark their waypoints.

2. MSWMS: WMS(Web Map Server) is the server built using Flask that produces

on-demand generated visualisations of meteorological predictions. This is particularly

useful when the location at which the flight campaign is being held does not have access

to high bandwidth internet. MSUI uses this server to fetch the predicted visualizations

and then display them on top of maps for researchers to analyse and plan their flights

better.

3. MSCOLAB: MSCOLAB(Mission Support Collaboration) is the component which allows

real-time collaboration among researchers. Allowing researchers to create “projects”,

edit flight paths in real-time and communicate with each other using a chat service,

mscolab greatly improves the time taken by researchers to come up with a flight path.

The mscolab server is built using Flask.

A Brief Description of Mscolab’s Working:
Mscolab currently has 2 windows:
1. The Project Listing Window:
A user has to connect to the mscolab server then log in. The user has the following options:

● Add Project: Allows the user to create a new project

● Export: Save the project as a .ftml file.

● Autosave: Only the creator and admins have this
option. If checked, when any user makes a change
to the project it is automatically saved to the server.
If unchecked all changes made by a user are saved
in a temporary file in ~/mss/tempfile_mscolab.ftml. In
this case the user has 2 options. Either “save” the
changes to the server. This completely overwrites
the server with the user’s changes and creates an
entry in the database so if the changes are not
desirable we can checkout to a previous commit.
The other option is “fetch”. This fetches the

changes from the server and completely overwrites the user’s local changes. If autosave
is turned on at any moment all users will lose their local work which will be overwritten by
the server .ftml file.

● Table/Side/Top View: This allows users to visualise the flight path in different views and
make changes to the flight track.

2. The Chat and User Management Window:

This window has the following functionality:

● Sending Messages: Users can chat with each other using plain text messages.

● Project Users Management: The mscolab project admins can add/modify/delete users
from the project using the textbox provided.

● Commit History: Each time a user presses “save” in the main mscolab window when
autosave is off, a commit is recorded in the Change table in the database. This commit
shows up in the commit history box at the bottom of the window and a diff between the
new and old .ftml file is shown in the message box to all users. If the pushed changes
are not good the admins can checkout to an older commit.

Current Issues in Mscolab:
There are a few issues with the current capabilities of mscolab. The following are the areas of
improvement:

1. Flight Path Editing: There is very little flexibility for users when it comes to editing flight
paths. These constraints include:

○ If any user wants to try out some changes locally or doesn’t have access to good
internet, they don’t have an option to work on a local file. They are dependent on
whether the admins have turned autosave on or off.

○ No way exists to compare your changes with the server file when pushing to the
server. The only option is to overwrite the server file completely with your
changes when clicking save.

○ All the changes made while autosave is off are stored in a single temporary
file(~/mss/tempfile_mscolab.ftml). This data is completely volatile and starting to
work on a different project would overwrite it.

○ No control on when a commit can be made. The only time a commit is made
when a user “saves” his changes when the autosave is off. Admins might want to
manually add a commit as a checkpoint while developing a flight path.

2. Chat Limitations:
○ The current chat system only has a feature to send simple plain text messages.

This might make users shift to an external chat application.
○ The chat can get cluttered with .ftml change alerts every time a user “saves”

his/her changes.
3. User Management: The only way for admins to add users to a project is through a text

box by entering the usernames one by one. This is okay for smaller projects but when
the number of users goes above say 10 this process can be very time-consuming.

My Proposal:
If selected for GSOC, I would be working on fixing the issues mentioned above. The following is
a detailed explanation of what I would be working on to tackle these issues during my GSoC
period.

Flight Path Editing: To handle the issues related to flight path editing, the “autosave” feature
needs to be removed and instead of just using a temporary file to store local changes each
project would require its own file. The new directory structure is shown below. Each project
would have a .ftml file inside ~/mss/localColabData which would reflect the user’s personal
work. The “autosave” functionality would be removed and instead 2 new toggles will be added.
These would be:

1. Work Offline Toggle: Available to every user. Turning it on would start a work offline
mode in which only the local .ftml file in ~/mss/localColabData would be changed. As
each project has its own .ftml file, the user can easily switch between projects without
necessarily saving his/her changes. Each time a user decides to push changes to the
server, a commit is recorded.

2. Auto Sync Toggle: Only available to mscolab project admins. If turned on, every
change any user makes would be directly made to the .ftml file on the server in real-time.
If turned off, each user would be sent into the work offline mode and would have to use
the “push to server” button if they want to write their changes to the server.

To help users compare changes and merge local and server files according to their needs
whenever they push changes to the server or fetch from the server, a new merge window
would be required. This window would allow the user to compare the data side by side and let
the user keep whatever changes he/she prefers.

A commit button would be provided to the mscolab project admins to make a commit at any
point as a checkpoint to which they can later revert back to.

Chat Service Additions: For improving the communication between the users, I would be
working on adding the following features to the chat service provided in mscolab:

1. Markdown Support: Users would be able to send messages which can be formatted
using markdown. A preview tab would be available for them to first preview the
message.

2. Image Upload: Users would be able to send images in the chat.
3. Message Delete: Users would be able to delete their messages to prevent confusion

from accidentally sending a wrong message.
4. Message Search: Users would be able to search for a message in the chat to help them

find the information they are looking for in a long conversation.
5. Message Replying: Users would be able to reply to specific messages. This feature is

particularly helpful in group chats like in mscolab to remove ambiguity.
Apart from these features, a new UI for the chat window would be developed. The commits
history section would be moved to a separate window of its own where the commit alerts and
commit checkout facility would be available making the chat less cluttered.

User Management: To make managing users of a mscolab project easier for the admins, a
new Admin Dashboard would be developed. This window would let admins view all the users
in a table and add them quickly by selecting them from the table and adding/modifying/deleting
their permission in bulk.

From here on I have described what my work for GSoC will be in terms of database schema
designing, the API’s that would need to be developed or modified and the user interface for the
proposed ideas.

Database Schema:
For managing the auto-sync setting, a new attribute - “autosync”, would be added in the
Project table. The Permissions table would be renamed to UserSettings table and a boolean
attribute - “work_offline” would be added to it to hold the value of the user's offline mode
setting.

For incorporating the chat service features new attributes in the Message table would be added.
These would be “attachment” which would store the path of the image saved on the server or
would be null and the other would be “reply_id” which would have the id of the message to
which this message replies to. After making the changes the final database schema for mscolab
would be:

● User

○ Id: Id of user. Primary Key
○ username: Unique username of each user.
○ emailid: Unique email address of each user.
○ Password: Hashed password of each user.

● Project
○ Id: id of project. Primary Key
○ path: name of the project.
○ description: Short description of the project.
○ autosync: automatic sync is on by admin or not.

● UserSetting
○ Id: id of setting. Primary Key.
○ u_id: id of a user. Foreign Key.
○ p_id: id of a project. Foreign Key.
○ access_level: access level of the user. (Creator, Admin, Collaborator, Viewer)
○ work_offline: If the user has work offline enabled or not.

● Message
○ id: id of the message. Primary Key.

○ u_id: id of the user who sent the message. Foreign Key.
○ p_id: id of the project to which this message belongs. Foreign Key.
○ reply_id: id of the message this message is replying to. Null if not replying to any

message.
○ text: The text content of the message.
○ attachment: The path to the image file on the server. Null otherwise.
○ created_at: timestamp on when the message was made.

● Change
○ id: The id of the change. Primary Key.
○ u_id: The id of the user who made the change. Foreign Key.
○ p_id: The id of the project of this change. Foreign Key.
○ comment: The commit comment message.
○ commit_hash: The git commit hash for the change.
○ created_at: Timestamp of when the change was made.

API:
The following are the new APIs or the existing ones which would need to be modified on which I
would be working on for my ideas proposed for GSoC.

Flight Path Editing:
● Fetch User Settings: Need to update existing endpoint /project_details to include the

work_offline value and the autosync value (enabled or disabled)

● Toggling Work Offline on/off: New endpoints /work_offline_enabled and
/work_offline_disabled would be developed to set the status of the work_offline in the
UserSetting table.

● Toggling Auto Sync: New endpoints /enable_autosync and /disable_autosync need to
be developed. Both endpoints update the autosync value for the project in the Project
Table. The /disable_autosync endpoint emits a socket event to all the users and enables
work offline for every user. Whereas the /enable_autosync emits a socket event to let
users know that auto-sync is on and if they want they can turn off the work offline mode.

● Commit Changes: Requires new endpoint - /commit_changes which takes a commit
message and commit hash to insert an entry in the Change Table. A python wrapper for
git like GitPython can be used to make the commit and get the commit hash.

● Fetch Server Waypoints: Requires new endpoint - /fetch_waypoints data in the server
.ftml file. This endpoint is used in the Merge Window to compare the local and server file
changes.

● Pushing To Server: Each time a user pushes to the server, he/she first needs to make
a choice of which changes to keep and how the local and server file should be merged.
This is handled by the new Merge Window. After selecting the changes the data is

https://gitpython.readthedocs.io/en/stable/#

pushed to the server and both server .ftml file and local .ftml are synced. A commit is
made and saved as an entry in Change Table.

● Fetching From Server: When a user fetches changes from the server, he/she needs to
resolve the merge conflicts with his/her local file. This is done in the new Merge Window.
New functions would need to be added to update the local .ftml file after the user has
selected what changes he/she wants.

Chat Service Additions:
The following are the APIs and changes I’ll be working on for improving the chat service in
mscolab.

● Markdown support: It is handled in MSUI while rendering the messages using the
python markdown package to get the equivalent HTML.

● Saving Images: To handle attachments, when the user uploads the image, the file is
read as binary from the UI and the binary image data is emitted to the server along with
the other message details through a socket event. The add_message method in
ChatManager class would need to be modified to save the image on the server in
mss/mslib/mscolab/images using a combination of image name and timestamp as the
image name. The path to this image on the server is then saved in the Message Table in
the attachment column.

● Retrieving Images: The get_message function inside the ChatManager class needs to
be modified to check if the “attachment” attribute is null or not. If it is not null then the
image is read as binary and sent back to the UI where it is displayed using QPixMap.

● Deleting Messages: New endpoint /delete_message in mscolab server is needed. It will
receive the message id and delete the message from the database also emitting a
socket event to remove the message from every user’s chat window. It is usually
preferable to only be able to delete recent messages. Therefore, the message’s
created_at attribute can be used to check if the message is deletable or not.

● Message Replying: The UI will pass the reply_id to the ChatManager class. The
reply_id points to the message to which this message is replying to. It is saved in the
database along with all other message details.

Admin Dashboard:
The following APIs need to be added to the mscolab server for the admin dashboard:

● Fetch All Users Without Permission: Requires new endpoint -
/get_users_without_permission to get all the users on the server who do not have
permission to the project. Each flight campaign is running their own server so the
number of users won’t be very high.

● Fetch All Users With Permission: Requires new endpoint- /get_users_with_permission
to get all users who have permission to the project along with their access level.

https://github.com/Python-Markdown/markdown

● Add Permission for Multiple Users: Requires new endpoint - /add_permissions. Takes
an array of user ids along with an access level. Adds the corresponding permission in
the UserSetting Table.

● Modify Permission of Multiple Users: Requires new endpoint - /modify_permissions.
Takes an array of user ids along with the new access level. Modifies the values in the
UserSetting Table. Emits a socket event so the changes show up on every user’s
mscolab project window.

● Revoke Permission of Multiple Users: Requires new endpoint - /revoke_permissions.
Takes an array of user ids and deletes their entry from the UserSetting Table. Emits a
socket event to remove the users from chat rooms.

User Interface:
Here I have shown the user interface changes and the new windows that I would be working on
for the proposed ideas.

Flight Path Editing:

The creator and admins have access to making commits and toggling auto-sync. The function of
auto-sync is if the user does not have “working offline” turned on, all the changes will be synced
with the server in real-time.

● Toggling Auto Sync off: If auto-sync is off, work offline is toggled for everyone. No
changes will be saved to the server without the users pushing to the server manually.

● Pushing and Fetching from Server: Every time a push or fetch from the server is
made, the user can choose to either keep the local data, keep the server data or merge
them. This is done in the new merge_window. The user can view the two waypoint data
side by side and make his/her choices on how to merge by selecting the rows to keep in
the final flight track.

Chat Window Changes:
The new UI for the chat window on which I would be working on would be

● Markdown Support: The message box has two tabs - Message and Markdown
Preview. In the Markdown Preview tab, the user can preview how the markdown looks
before sending the message. The markdown python package is used to get HTML from
text content and display in the preview tab.

● Message Delete: The delete button is disabled by default. When a user selects his/her
own message, the delete button gets enabled and the user can click it to delete the

https://github.com/Python-Markdown/markdown

message. Invokes the /delete_message endpoint to delete the message from the DB
and emit a socket event to remove the message from every user’s chat window.

● Message Search: To Search a message the user needs to type in the text and click on
the search button. This would take the user to the most recent message matching the
search string. The user can use the up and down buttons to go to a previous or more
recent message which matches the search string.

● Message Reply: If a message is selected and then the send button is pressed the UI
sends the selected message’s id as the reply_id to the server. This way replying to a
specific message can be done. Clicking on the message can scroll you to the replied
message.

Commit History Window:
The commit history section would be removed from the chat window and shifted to a separate
window of its own.

This window will be using the existing APIs in mscolab server but would display the change in a
better and cleaner format, showing the difference in data through tables between the current
version and the selected commit version.

Admin Dashboard:
I would be developing a new window for the admin dashboard. The UI for the window is given
below. Two API calls are made on window load: /get_users_without_permission and
/get_users_with_permission and are used to populate the two tables.

● Adding Users: Multiple users can be selected at once from the table. An access level
for these users is selected and clicking on the “add” button invokes /add_permissions
endpoint sending it the array of selected user ids.

● Modifying or Deleting User Permissions: Similar to adding users, multiple users can
be selected from the added users table and their permissions can be modified or deleted
in bulk. Invokes /modify_permissions for modifying and /revoke_permissions for deleting
permissions.

The logic for other buttons like search, select all/deselect, filter etc is handled in the frontend to
make the process more quick and seamless.

Timeline
The following is my planned schedule as per GSoC’s timeline. My work primarily consists of
building 3 components. The most complex one being the new flight path editing system
because it requires a lot of changes in the existing code base itself so new bugs can appear in
different parts of the application dependent on this code. Hence, I will start out by working on
the Admin Dashboard, a completely new component, then the chat system and finally when I
am most familiarized with the whole codebase start working on the flight path editing system.

I will be working on all weekdays and if need arises I am also free to work on weekends. This
includes all holidays. I have added a buffer period after finishing each component to complete
any backlogs, refactoring code, fixing any new bugs and improving tests.

I will keep the last 1 and a half weeks free for bug fixing, increasing test coverage and improving
documentation.

Time Span Work

4th May Accepted Student Proposals Announced

4th May - 1st June Community Bonding Period

4th May - 5th May (2 days) Setup:

➔ Decide schedule and mode of communication

for weekly and emergency meetings.

➔ Setup a blog for GSoC.

6th May - 20th May (2 weeks) Finalize proposed changes with mentors:

➔ Discuss with the mentors about any changes

or improvements needed in the proposed
design and draft a final design document.

➔ Solve some existing issues in version 1.9.2 of
MSS.

➔ Improve the test coverage of mscolab.

21st May - 31st May (10 days) Diving deep into the codebase:

➔ Get familiarized with the existing code base in

depth.
➔ Make a rough note of all the functions and

code that would require modifications after
implementing the proposed ideas to catch
errors early.

1st June Official Coding Starts

1st June - 7th June (1 week) Get Started with Admin Dashboard:

➔ Start with adding the dashboard window to

MSUI.
➔ Implement the APIs for fetching users with

and without project permissions in mscolab
server.

➔ Implement APIs for adding, modifying and
deleting the project permissions in mscolab
server.

8th June - 14th June (1 week) Continue Development of Admin Dashboard:

➔ Add button click listeners and connect the

APIs with the frontend.
➔ Implement the filtering and search user logic

in MSUI.
➔ Write new unit tests for the admin dashboard

and improve existing tests.

15th June - 17th June (3 days) Buffer Period to work on any backlogs, fix new bugs
and improve unit tests.

18th June - 21st June (4 days) Start Development of Chat System:

➔ Redesign the project chat window for

mscolab in MSUI.
➔ Remove the commit history section from the

window.
➔ Update Message Database Table to include

the discussed attributes.
➔ Use python markdown package to convert

messages into HTML and display using
QTextEdit widget in the message box.

22nd June - 28th June (1 week) Work on modifying the ChatManager Class:

➔ Develop the /delete_message endpoint in

mscolab server.
➔ Update add_message method in

ChatManager class to handle saving images
on the server and saving the reply_id if there
is one.

➔ Update the get_message method in
ChatManager class to handle retrieving the
message attachment and reply_id if any.

➔ Update all the socket event handlers in
SocketManager class to include the new data.

➔ Add a file picker popup for uploading images.

29th June - 3rd July First Round of Evaluations

29th June - 5th July (1 week) Work on connecting the chat window frontend to the
mscolab server:

➔ Add button click listeners in the frontend and

connect the APIs to it.
➔ Work on search message logic in the

frontend.
➔ Create a new commit history window and

connect it with existing APIs.
➔ Write unit tests

6th July - 8th July (3 days) Buffer Period to work on any backlogs, code
refactoring, fixing new bugs and improve unit tests.

9th July - 19th July (1.5 weeks) Start work on the new flight path editing system:

➔ Update the mscolab main window UI to

include buttons for the proposed changes.
➔ Update UserSetting Table in database to

include work_offline attribute.
➔ Write endpoints in mscolab server to handle

enabling and disabling of auto sync and work
offline.

➔ Make changes in the WaypointsTableModel
to handle work offline mode along with
autosync.

➔ Change temporary_mscolab.ftml logic to
handle a separate file for each project.

20th July - 26th July (1 week) Connect the developed APIs to mscolab frontend:

➔ Update the get project details api

(/project_details) to include the auto sync
value for the project and the user’s work
offline mode value.

➔ Add click listeners for the auto sync and work
offline mode to connect them with the APIs.

➔ Add necessary socket events to enable work
offline for every user when auto sync is
turned off.

➔ Add a new unit tests and update the existing
ones to accommodate the new changes.

27th July - 31st July Second Round of Evaluation

27th July - 2nd August (1 week) Develop the Merge Window for merging local and
server waypoint data:

➔ Add the Merge Window in MSUI to show up

every time push or fetch buttons are clicked.
➔ Develop /fetch_waypoints API to get the

waypoints in the server .ftml file for the
project.

➔ Add logic in Merge Window to fetch
waypoints from the local project .ftml file and
connect the /fetch_waypoints API to populate

the 2 waypoint tables.
➔ Add Logic for picking out rows from the 2

tables to add in a final waypoints table.

3rd Aug - 9th August (1 week) Finish Work on Merge Window and start work on
manual commit functionality:

➔ Add functions for updating local .ftml file for

fetching waypoints.
➔ Modify the current save waypoints function

to handle the new changes.
➔ Add click listeners to the merge window to

connect these functions to the frontend.
➔ Develop a /commit_changes endpoint to

make to handle making commits to the server
file.

10th August - 16th August (1 week) Finish manual commit functionality and write tests:

➔ Add a dialog box popup for admins to enter a

commit message when clicking the commit
changes button.

➔ Connect the /commit_changes API to the
frontend.

➔ Write new unit tests and improve the existing
ones.

17th August - 19th August (3 days) Buffer Period to work on any backlogs, code
refactoring, fixing new bugs and improve unit tests.

20th August - 23rd August(4 days) Done with all the proposed functionality, work on
testing and improving code performance.
➔ Implement integration testing.
➔ Find and fix more bugs if found.
➔ Find areas to improve code efficiency and

refactor code.
➔ Document code and integrate documentation

to that of MSS.

24th August - 31st August Work Submission

24th August - 31st August (1 week) ➔ Ask the mentors for a more detailed review,
and work on fixes covering code,
documentation, tests etc.

➔ Project and documentation submission.

31st August - 7th September Mentors Submit Final Evaluation

8th September Final Results Announced.

Future Work
I plan to continue working on MSS after GSoC in my spare time. Some features which I hope to
work on after GSoC are:

● Mscolab Made the Primary UI: After my work for GSoC is completed, mscolab would
have really become a mature application and can be shifted from a secondary feature to
a primary part of MSS, becoming the starting window for MSS.

● Different File Support in Mscolab: Currently mscolab uses a .ftml file to store the data
in XML format. There are many different formats available which researchers use for
geospatial data like geoJSON, .shp etc. Extending support for these files would broaden
the use-case for mscolab.

● Improving flight path views in MSS: More views that allow researchers to visualise the
flight path and atmospheric data in a 3D fashion would greatly help them analyse the
flight path. Adding such a view in mscolab would require minimal modifications to
mscolab itself apart from developing the view window.

Other Commitments
● If I am selected for GSoC, it will be my full-time commitment. My college would resume

from the last week of July but that would not affect the number of hours I would work on
my project. I would be working for 40 hours a week on average.

● Due to the ongoing COVID-19 pandemic, I am currently not aware of when my university
exams for this semester will take place. My university exams last for a week and If they
are shifted to a date which coincides with my GSoC timeline, I would be working a little
less that week. However, I have given myself enough buffer time in my schedule and
distributed my work well in my timeline to easily get back on track if such a situation
arises.

● Python Software Foundation is the only organisation I am applying for in GSoC. I am
only submitting this single proposal for the Mission Support System sub-org under
Python Software Foundation.

