
Integrate library UNU.RAN into
scipy.stats

Self-Introduction

I am Tirth (@tirthasheshpatel on GitHub), a third-year computer
science undergrad student at Nirma University. I am quite
familiar with Cython (e.g. I have used Cython to create N-Body
simulations and completed OReilly's "Cython: A Guide for
Python Programmers" book) and a lot of my college courses
make use of C (e.g. ‘Data Structures and Algorithms’ and
‘Graph Theory’). I have completed courses on statistics such as
‘Probability and Statistics’ and ‘Bayesian Statistics’.

Open Source work: I have participated in GSoC with the PyMC
team last year. Please find my work here:
https://summerofcode.withgoogle.com/projects/6135416450711
552
I have been a contributor to SciPy since May 2020 and a
maintainer since March 2021. My PRs:
https://github.com/scipy/scipy/pulls/tirthasheshpatel

Contents

https://github.com/tirthasheshpatel
https://nirmauni.ac.in/
https://github.com/pymc-devs/
https://summerofcode.withgoogle.com/projects/6135416450711552
https://summerofcode.withgoogle.com/projects/6135416450711552
https://github.com/scipy/scipy/pulls/tirthasheshpatel

1 Project Abstract

2 Coding Proposal: Design
2.1 UNU.RAN Library
2.2 UNU.RAN Source Tree
2.3 Interfacing UNU.RAN
2.4 Building SciPy with UNU.RAN

3 Coding Proposal: Prototype
3.1 Functional API
3.2 Class Based API

4 Coding Proposal: Timeline
4.1 Milestones
4.2 Timeline
4.3 Reserved time

Conclusion

Appendix A Limitations of the Prototype

Appendix B The `.ch` Convention and Deprecated files

1 Project Abstract

UNU.RAN is a performant C library with methods to sample
from continuous, discrete, multivariate, and empirical
distributions. It has been used by CERN in its ROOT project and
an R interface called Runuran also exists. It will be a very nice
addition to scipy.stats. The default method used by SciPy to

http://statmath.wu.ac.at/software/unuran/
https://root.cern.ch/doc/master/group__Unuran.html
https://cran.r-project.org/web/packages/Runuran/index.html

sample from any distribution requires integrating the PDF and
then numerically inverting the CDF. The implementation in
SciPy is too slow to be relied on for practical purposes and
custom methods for sampling random variates need to be
implemented for the distributions in SciPy. In contrast
UNU.RAN offers several methods (e.g. TDR, PINV) that offer
very good performance to sample from wide classes of
distributions.

The goal of this project is to provide an object-oriented interface
for methods present in UNU.RAN to sample from univariate
continuous and discrete distributions using NumPy’s
BitGenerator as the Uniform Random Number Sampler
(URNG). My proposal also includes writing a comprehensive
test and documentation suite with tutorials. If time permits, I
also propose to write benchmarks for the added methods.

2 Coding Proposal: Design

2.1 UNU.RAN Library

UNU.RAN is a C library for generating non-uniform
pseudorandom variates from continuous, discrete, multivariate,
empirical and matrix distributions. There are several methods
for generating random numbers. The choice depends upon the

http://statmath.wu.ac.at/software/unuran/doc/unuran.html#TDR
http://statmath.wu.ac.at/software/unuran/doc/unuran.html#PINV
https://numpy.org/doc/stable/reference/random/bit_generators/index.html
https://numpy.org/doc/stable/reference/random/bit_generators/index.html

information one has about the distribution. For example, if we
desire to generate samples from a continuous distribution and
we have its PDF and its derivative w.r.t the random variate, we
can use the Transformed Density Rejection method provided by
UNU.RAN.

SciPy currently only has a pure python implementation of the
Ratio-of-Uniforms (RoU) method to sample from a continuous
distribution.

2.2 UNU.RAN Source Tree

UNU.RAN is modularized into 9 sub-directories:
● distr : Contains structures for representing different

types of distributions (e.g. continuous, discrete, matrix) in
C.

● distributions : Implements several probability
distributions like the normal and beta distributions.

● methods : Contains methods (like TDR, DAU, PINV) for
sampling from different types of distributions.

● parser : UNU.RAN provides a “String API” which is a
higher level API for building distributions and sampling
using string expressions. This directory contains a parser to
parse such strings and create a distribution/sampler.

● specfunct : Contains some special mathematical
functions like area under a gaussian curve.

● tests : Contains functions for convergence checks, error
checks and other statistical tests.

● uniform : Contains wrappers for third party C libraries
like GSL, RngStreams, ect that provide uniform random
number generators.

● urng : Contains structures to represent a uniform random
number generator used by sampling methods.

● utils : Utilities used throughout the library.

As discussed in the mailing lists, we don’t have the permission
to use default URNGs provided in the uniform sub-directory.
This sub-directory can be removed before building. The parser

sub-directory can also be removed as the String API doesn’t
offer all the functionality present in UNU.RAN and probably
won’t be used to wrap any functionality. Other sub-directories
contain core structures and algorithms that need to be included
in SciPy. Appendix B lists a pre-processing step that is required
to build UNU.RAN with SciPy’s build system.

2.3 Interfacing UNU.RAN

Once unwanted directories are removed and remaining files are
preprocessed, a Cython wrapper can be written to provide an
interface to the library. The following steps are involved to
sample from any distribution using a method in UNU.RAN:

1. Create a new distribution.

2. Set the required attributes (e.g. PDF, CDF, etc) of the
distribution needed by the method.

3. Create a “parameter” object using the distribution. (the
parameter object is a representation of a method in
UNU.RAN. So, changing the attributes of the parameter
means changing the attributes of the method itself)

4. Change the default attributes of the parameter object if
provided by the user.

5. Initialize a generator using the parameter object.
6. Start sampling from the generator. If the user hasn’t

provided a URNG (an instance of NumPy’s BitGenerator),
use the default URNG of the parameter object.

My proposal is to use an object-oriented interface for such a
workflow. The first five steps are only setup and don’t need to
run every time one needs to sample from the distribution. Hence,
they can be performed in the __cinit__ method itself. A
method can be provided to sample from the distribution. An
example of such a API is shown below:

cdef class TDR:

def __cinit__(self, pdf, dpdf, params/args, ..., c=-0.5, variant='ps',

...):

cdef unur_distr *distr = unur_cont_new()

set the attributes of the distribution.

...

initialize a parameter object

cdef unur_distr *par = unur_tdr_new(distr)

change the default attributes of the parameter

object `par` if provided by the user.

...

create a generator object.

cdef unur_gen *rng = unur_init(par)

def sample(self, size=1, random_state=None):

set the random state if given.

cdef unur_urng *urng = self._get_urng(random_state)

unur_chg_urng(rng, urng)

sample from the distribution.

...

Initially, parameters to set the most important attributes of the
parameter object can be added. Another option is to add a
parameter for each option that can be set. The latter might be a
little superfluous and would need a lot of documentation and
tests. Hence, the former is better initially and once it is usable
new parameters, documentation, and tests can be added on top
of it easily. The API might also need changes based on user
feedback and consensus of the developers. We can iterate on
top of this design to incorporate new ideas.

Moreover, we can add getter (property) methods to get the
value of the attributes of the parameter object. Also, as SciPy
provides rv_discrete and rv_continuous classes to
create custom distributions, a class method that accepts
instances of such distributions to initialize a generator can be
created:

cdef class TDR:

def __cinit__(self, ...): ...

def sample(self, ...): ...

@classmethod

def from_scipy(cls, dist, dpdf, ...):

extract the pdf of the distribution

pdf = dist.pdf

extract the domain

domain = dist.a, dist.b

now use the cls.__cinit__ method to initialize

the generator.

cls.__cinit__(pdf, dpdf, params, domain, ...)

Another thing that the API needs to handle is error codes thrown
by UNU.RAN in case of failure. UNU.RAN throws certain
codes to indicate a failure. For example, in case a value out of
domain is passed to one of the methods of the distribution,
UNU.RAN throws a UNUR_ERR_DISTR_DOMAIN error
(which is an error code that expands to 20). Corresponding to
each error code is a small description that can be fetched using
unur_get_stderror call.

This is very helpful for debugging and reporting informative
errors to the user directly from Python and can be added easily.

2.4 Building SciPy with UNU.RAN

The library along with its Cython wrapper can be built using
NumPy distutils. A rudimentary setup file can be found under
the Prototype Section of this proposal. Macros that UNU.RAN
expects at compile time can be set using the config.h.in file.
Some of these macros check for the existence of standard

http://statmath.wu.ac.at/software/unuran/doc/unuran.html#Errno
http://statmath.wu.ac.at/software/unuran/doc/unuran.html#Error_005freporting

headers like limits.h and stdlib.h. This can be achieved
via Python using
scipy._build_utils.compiler_helper.try_compile

in the pre build hook:

def pre_build_hook(build_ext, ext):

from scipy._build_utils.compiler_helper import try_compile

has_stdlib = try_compile(cc, code='#include <stdlib.h>\n'

'int main(int argc, char **argv) {}')

if has_stdlib:

ext.define_macros.append(('HAVE_STDLIB_H', '1'))

All the sources and headers can be fetched from the source tree
of UNU.RAN and used to compile the Cython wrapper.

3 Coding Proposal: Prototype

A working prototype of the proposed API can be found here:
https://github.com/tirthasheshpatel/scipy/tree/unuran/scipy/stats/
_unuran

It contains a very basic documentation and test suite. Please see
Appendix A for all the limitations of the prototype that are yet to
be addressed.

It builds on Ubuntu 20.04 and provides both functional and
class-based API. Both the APIs have been tested and
documented. Please find the build logs here:

https://github.com/tirthasheshpatel/scipy/tree/unuran/scipy/stats/_unuran
https://github.com/tirthasheshpatel/scipy/tree/unuran/scipy/stats/_unuran

https://github.com/tirthasheshpatel/scipy/pull/5/checks?check_ru
n_id=2308954489

3.1 Functional API

A functional API for TDR and DAU methods for sampling from
continuous and discrete distributions respectively has been
added. Usage:

>>> from scipy.stats._unuran import tdr

>>> rvs = tdr(lambda x: 1 - x*x, lambda x: -2*x, params=(),

... domain=(-1, 1), size=10000)

>>> import matploblib.pyplot as plt

>>> pdf = lambda x: 1 - x*x

>>> x = np.linspace(-1, 1, 1000)

>>> px = pdf(x)

>>> plt.plot(x, px)

>>> plt.hist(rvs, bins=50, density=True)

>>> plt.show()

The user is able to sample from the distribution but not change
the attributes of the parameter object. This is one of the big
limitations of a functional API that a class-based API addresses.

3.2 Class Based API

A class based API is more flexible with an additional benefit of
one time setup cost only. Hardly losing any performance, it
allows the user to set the attributes of a parameter object and

https://github.com/tirthasheshpatel/scipy/pull/5/checks?check_run_id=2308954489
https://github.com/tirthasheshpatel/scipy/pull/5/checks?check_run_id=2308954489

sample from the distribution multiple times without running the
setup every time. Example:

>>> from scipy.stats._unuran import TDR

>>> rng = TDR(lambda x: 1 - x*x, lambda x: -2*x, params=(),

... domain=(-1, 1), c=0., cpoints=10, variant='ia')

>>> rvs = rng.sample(size=100_000)

>>> import matploblib.pyplot as plt

>>> pdf = lambda x: 1 - x*x

>>> x = np.linspace(-1, 1, 1000)

>>> px = pdf(x)

>>> plt.plot(x, px)

>>> plt.hist(rvs, bins=50, density=True)

>>> plt.show()

Variant and the number of construction points to use can be
passed as parameters followed by a call to the `sample` method
to sample from the distribution. This is a simple use case of such
an API. Including more methods to get and set more parameters
and even change them between calls to the sample method will
be useful.

4 Coding Proposal: Timeline

4.1 Milestones

Milestone 1: UNU.RAN has been added as a submodule to
SciPy. Deprecated and unnecessary files (e.g src/uniform

directory) have been removed. A pull request has been filed.
SciPy builds on all the platforms.

Milestone 2: An object-oriented interface for methods to
sample from univariate continuous and discrete distributions has
been written. Basic functionality has been provided (e.g.
methods to let the user change the most important parameters of
the parameter object). A basic documentation and a test suite has
been added.

Milestone 3: A more comprehensive documentation and test
suite has been added. Tutorials have been written. Docs and
tutorials build. Tests pass. An early merge to test the new
features out on master. Reserve some time for bug reports and
follow up PRs. If time permits, add a benchmark suite. At the
end, the API should be usable and we should be able to test the
performance of the interface.

4.2 Timeline

Community Bonding Period (May 17, 2021 - June 7, 2021):
Get to know the mentors. Polish the prototype. Start to work on
a pull request. Try to reach Milestone 1.

Phase 1 (June 7, 2021 - July 16, 2021): Start to wrap the
proposed methods from UNU.RAN. Reach Milestone 2 or
complete most of the tasks listed in Milestone 2.

Phase 2 (July 16, 2021 - August 16, 2021): Start writing
tutorials. Address documentation failures, if any. Write more
tests. Reach Milestone 3. If the CI is happy and there is a
consensus to merge, merge the PR early. If time permits, write a
benchmark suite for the new API. Reserve the last couple of
weeks and post GSoC period for iterating on the proposed
design.

4.3 Reserved time

Starting from May 17, 2021, I have my semester end
examinations which would span a week or two (end date hasn’t
been provided). My contribution during that time will be fairly
low. The timeline has been created accordingly.

Conclusion

Addition of UNU.RAN’s methods to SciPy will be a valuable
enhancement. I propose to add a class-based API to SciPy that
enables users to access powerful universal sampling methods
from UNU.RAN. A working prototype is also available that will

serve as the starting point for my work. Thanks to Christoph for
helping me figure out the object-oriented design of the API.

Appendix A Limitations of the
Prototype

Here are some of the limitations of the prototype that I aim to
address during the coding period:
● Only builds on Ubuntu 20.04
● Unstructured code: The code is not structured properly. For

example, the declarations which should ideally be present
in a separate `.pxd` file hasn’t been considered. There is
also a lot of repeating code which could be converted into
functions.

● Doesn’t remove all the unwanted files/directories: Most of
the files and directories under the UNU.RAN source tree
have been kept intact.

● Doesn’t check for UNU.RAN error codes: A minimal
amount of error handling has been done.

● Doesn’t check for existence of standard libraries:
UNU.RAN checks for certain standard libraries before
building. This behaviour needs to be replicated.

Appendix B The `.ch` Convention and
Deprecated files

UNU.RAN uses a `.ch` file convention. These files contain
implementations of routines whose declarations are present in a
different `.c` file where the needed `.ch` file is `#include`d at the
end of the declarations. This is an abuse of the `#include `
directive and needs to be addressed.

One of the possible solutions is to rename the `.ch` files to `.h`
files and change the `#include ` statements to include the `.h` file
instead. This simple approach should work as these `.ch` files
are not included anywhere else nor are they included multiple
times in the same file.

We also don’t want to build the deprecated files. Fortunately, all
the deprecated files are named `deprecated_<file_name>.c` and
can be removed easily before building.

