
Proposal for GSoC 2022: Scipy
Restructuring the F2PY frontend and replacing the build system

1. Contact Details

● Name: Namami Shanker
● Nickname: Richie

● Country: India (+5:30 GMT)

● Email: namami2011@gmail.com
● Phone: +91 8840273138

● GitHub: https://github.com/NamamiShanker

● Personal blog: https://namamishanker.github.io/
● LinkedIn: https://https://www.linkedin.com/in/namamishanker/

2. Self Introduction

I am Namami Shanker, an Electrical Engineering 3rd year undergraduate at the
Indian Institute of Technology, Goa. I am an open-source software advocate
experienced in python, Scientific python libraries and backend development.

I have work experience as a python/backend intern at DroneBase, a diagnosis and
analysis company in the solar energy sector. I worked with a team of 20+
experienced engineers to develop backend APIs and test suites with Flask and
Pytest. I gained experience in API development, Database engineering and writing
scalable, testable and maintainable code.

I am also the lead backend engineer at IIT Goa's software development club. I
have created many working web/mobile applications for various fests and events
for the Institute and Clubs. I have experience in Linux sysadmin skills. I pursued
OpenSUSE Cloud-Native Fundamentals Scholarship Program, through which I
gained knowledge in container management, orchestration, and CI/CD skills.

2.1. Open-Source Contributions

I have been active in open-source communities since June 2021, when I first
participated in GirlScript Summer of Code. I was the most significant contributor
to Dynamic CLI (now a member of the organization). Since I am an engineering

mailto:namami2011@gmail.com
https://github.com/NamamiShanker/
https://namamishanker.github.io/
https://www.linkedin.com/in/xurigong
https://www.linkedin.com/in/namamishanker/
https://github.com/IndianOpenSourceFoundation/dynamic-cli


student, I drifted towards Scientific Python libraries. I started tracking Scipy’s
issues and submitting pull requests while communicating with the maintainers. I
have been striving towards making meaningful contributions while learning
continuously since the start of my involvement with the Scientific Python
community.

The following are my contributions to the SciPy community (chronological): -
1. DEP: Remove usage of numpy.compat
2. DOC: Remove link to alpha in scipy.stats.dirichlet
3. BUG: Update chi_gen to use scipy.special.gammaln
4. BUG: Fix owens_t function when a tends to infinity
5. Fix incorrect error message in multivariate_normal
6. ENH: Add freezability to remaining multivariate distributions
7. ENH: stats: Add freezability to unitary_group
8. ENH: stats: Implement frozen random_correlation

I have started working on the F2PY module within NumPy and have contributed a
documentation page: -

1. DOC: Add F2PY tests documentation

Apart from this, I have been in constant touch with maintainers regarding goals of
SciPy, upcoming projects etc. I was introduced to F2PY through SciPy’s idea-list
for GSoC. I started studying it and discussed many of my ideas with Mr Rohit
Goswami. I have written the following articles while studying F2PY: -

1. Building fast libraries: NumPy and SciPy
2. F2PY Tests

3. Project

3.1. Project Name

Restructuring the F2PY frontend and replacing the build system.

3.2. Project Description

F2PY is an open-source utility that provides an easy connection between Python
and Fortran languages. Initially, F2PY developed outside the NumPy repository
and was imported into NumPy around 2007. It has not had any major releases
since 2009, ever since it became feature-complete for Fortran 77. Beginners
browsing its codebase in the current state might find it challenging to read,
understand and contribute. The frontend of F2PY is a handwritten command

https://github.com/scipy/scipy/pull/14009
https://github.com/scipy/scipy/pull/14200
https://github.com/scipy/scipy/pull/15107
https://github.com/scipy/scipy/pull/15272
https://github.com/scipy/scipy/pull/15579
https://github.com/scipy/scipy/pull/15653
https://github.com/scipy/scipy/pull/15671
https://github.com/scipy/scipy/pull/15681
https://github.com/numpy/numpy/pull/21330
https://namamishanker.github.io/posts/scipy_fortran_f2py/
https://namamishanker.github.io/posts/f2py_tests/


line parser that predates the intrinsic ‘argparse’ module (introduced in Python
3.2, 2011) by several years.

I propose modernising the CLI with the “argparse” python library, simplifying
the frontend codebase and making it more developer-friendly to contribute to
(discussed in sec. 3.3.1).

Since “np.distutils” is set for deprecation, I propose adding an option to build
the F2PY’s generated CPython extension modules with Meson. Meson will
significantly speed up building standalone extension modules through the F2PY
CLI. There is no change proposed to the process of generating C and Fortran
wrappers from Fortran source files. Generation of the source code for
integration in Python projects will be carried out in the same way. Currently,
“np.distutils” is used by F2PY to build generated extension modules. Adding a
Meson backend will provide faster builds and long-term backend support for
F2PY (discussed in sec. 3.3.3).

Additionally, I plan to re-implement the class-based test-suite of F2PY in a
modern pytest manner and add a developer’s guide to F2PY (discussed in sec.
3.3.2).

3.3. Predesign

3.3.1.CLI Design: F2PY uses “f2py2e.py” as a CLI interface to parse
user input. “f2pyarg.py” is an ongoing re-implementation of this CLI
using the “argparse” module, but it needs to be completed. I intend to
complete this rewrite and provide a modernised, developer-friendly
CLI. Additionally, I plan to deliver developer-guide documentation
and a test suite covering the CLI.

3.3.2.Test suite Design: F2PY's current test suite predates “pytest” and
does not use fixtures. I shall work on refactoring the existing test
suite, using pytest features such as fixtures, setups and tear-downs.

3.3.3.Backend design: F2PY currently uses “np.distutils” for compiling
generated C files. Since it is to be deprecated, I intend to work on the
addition of a flag that will switch the build backend to Meson for

https://github.com/HaoZeke/numpy/blob/f2py2eTests/numpy/f2py/f2py2e.py
https://github.com/HaoZeke/numpy/blob/argparse_f2py/numpy/f2py/f2pyarg.py


F2Py modules.

As discussed with the NumPy developer community and noted in the
documentation, the goal is to transition gradually. F2PY will support
both “np.distutils” and “meson” building options for testing, after
which the former can be removed completely.

Detailed back-end proposal: F2PY is primarily used for signature
file generation (-h flag), extension module construction (-m flag),
and module building (-c flag). The new CLI will not require
extensive refactoring of files pertaining to the first two features.
However, compiling and building modules (Ex -
“f2py2e.py:run_compile”) will receive heavy refactoring to
incorporate meson building.

I plan to create a template “meson.build.src” file that the CLI will
use to generate a custom build file. The refactored “run_compile”
method will generate a new “meson.build” file and invoke meson to
build a shared library from the generated C extension module.

3.3.4. Technology Roadmap: I will continue to use the Python internal
“argparse” module to design the CLI. “pytest” will be used to add
tests for the CLI and modernise the existing test suite. Meson will be
required to build C extension modules with F2PY.

1. Post GSoC:

The following are some topics I would like to continue working on after the
end of GSoC: -

● Add pyf file support to Meson. Meson does not natively support or
understand “pyf” files. Cython was added very recently. I would like to
add F2PY support to meson to natively parse “pyf” files.

● Derived types support. Over the course of my conversations with the
F2PY development team in NumPy, I felt that the lack of modern derived
type support holds F2PY back. I want to get involved in adding this
support and make F2PY more general purpose.

https://github.com/numpy/numpy/blob/main/numpy/f2py/f2py2e.py#L499


● Improve docs, add tests and fix bugs. I shall remain active in the
Scientific Python community. This project will tremendously increase my
programming skills and knowledge. I will keep maintaining F2PY and
want to extend my support to Numpy and Scipy as much as I can.

● Maintaining Scipy. SciPy was the first open-source software to which I
contributed. I learned so much from its community, and I will continue to
help maintain and improve SciPy. I will continue my work on the “stats”
module as detailed in my discussion with Matt Haberland.

https://github.com/scipy/scipy/pull/15681


2. Timeline

2.1. Community Bonding Period (May 20 – June 12)

● Introduce myself and this project on NumPy, SciPy and GSoC mailing
list.

● Remain in constant touch with my mentors using Slack. Set up user
requirements and discuss the design details with mentors.

● Discuss with mentors the implementation plan.
● Try to fix bugs to understand F2PY’s source code.
● Thoroughly study Meson’s documentation and understand its usage.
● Set up dev environment and my blog page for TODO list and weekly

report.

2.2. Official Coding Period (June 13 – September 4)

Week 1 - 2 (June 13 – June 25)

● Complete the existing f2pyarg.py. Implement missing functionalities like
compile, link etc.

● Refactor the “run_compile” method for the “np.distutils” backend.
● Discuss linking issues and to-be-deprecated flags with the mentor and

implement solutions.

Week 3 - 4 (June 27 – July 9)

● Start working on existing test_f2py2e.py. Implement remaining tests,
enhance existing failing tests and increase test coverage.

● Communicate with the mentor and maximise tests for f2py CLI.

Week 5 (July 11 – July 16)

● Add developer documentation for F2PY. Will contain files
“f2py-developer.rst” and “f2py-test.rst” explaining file structure, the
functionality of F2PY and its test suite, respectively.

● Start refactoring F2PY’s test suite in a modern fixture-based style.

Week 6 (July 18 – July 23)

https://mesonbuild.com/Manual.html
https://github.com/HaoZeke/numpy/blob/argparse_f2py/numpy/f2py/f2pyarg.py
https://github.com/HaoZeke/numpy/blob/f2py2eTests/numpy/f2py/tests/test_f2py2e.py


● Finish refactoring the test suite.
● Fix bugs and update documents.

* First evaluation period (July 25 – July 29)
● Deliver the implemented f2py CLI, implemented tests and developer

guide.

● The F2PY CLI will now be more open to study and contributions by
developers.

Week 8 - 9 (Aug 1 – Aug 13)
● Create a “meson.build.src” file. (see sec. 3.3.3)
● Update “run_compile” method to add meson building option.

Week 10 (Aug 15 – Aug 20)
● Fix bugs and update documentation.

Week 11 -12 (Aug 22 – Sept 4)
● Pull request for code review and merge.
● Buffer time for any unexpected delays.

* Final evaluation period (Sept 5 - 12):
● Deliver the working implementation of the Meson build system for F2PY.
● Wrap up the project and submit the final evaluation of my mentor.

3. Acknowledgement

I want to thank Mr Rohit Goswami for helping me iterate this proposal and for
all the suggestions he provided me for this project.

4. GSoC participation

This is my first application for Google Summer of Code.


