
Tern: Use shlex to parse Dockerfile RUN instruction commands

About me
1. Name: Junlai Wang.

GitHub nickname: ForgetMe17
2. School: Beihang University, Beijing, China.

Program: Signal Processing.
Year: First year in the 2.5 years of schooling(Postgraduate), enrolled in 2019.9.

3. Time zone: UTC+8
4. Breif Resume:

a. Received Bachelor Degree of Electronic Enginering in Beihang University,
Beijing, China, at 2019.06.

b. Developed a robot controlling system using Python which use WiFi and
Website to control. Beihang University, Beijing, China, 2017.09 ~ 2018.05.

c. Internship at Lenovo Research. Programming on Raspberry PI and Arduino
with Python and C for a smart chair project. Beijing, 2019.4 ~ 2019.7.

d. Developed a Wechat Mini-program for the EE Department in Beihang
University. 2018.03~2018.06

Code contribution
1. Document YAML data output that Tern produces #561
2. Parsing ARG varibales #580
3. Record git project name and sha #571
4. Find Git Project URL #606

Project Infomation
1. Sub-org name: Tern

2. Project Abstract: Use shlex to parse Dockerfile RUN instruction commands. On

looking at the type of parsing needed for full shell scripts embedded in the run
command, we may need to develop a shell script parser to catch all places where
software could have been installed.

3. Detailed Description: There are a few parsers for shell script, here are some
references:

a. sh​. A shell parser, formatter, and interpreter. Supports POSIX Shell, Bash,
and mksh. Requires Go 1.13 or later.

b. bash-parser​. Parses bash source code to produce an AST.
c. bashlex​. A Python port of the parser used internally by GNU bash.

Parsing
In this project, we need to catch all places where software could have been installed.
In a shell script, most softwares are installed by some common command like tar,
unzip, wget, git clone, apt install etc. What we need to do first is parsing the script

https://github.com/vmware/tern/pull/561
https://github.com/vmware/tern/pull/580
https://github.com/vmware/tern/pull/571
https://github.com/vmware/tern/pull/606
https://github.com/mvdan/sh
https://github.com/vorpaljs/bash-parser
https://github.com/idank/bashlex

into statement parts: command, variables, if-statement, for-statement and
case-statement. For most cases, we can match the installation place with the
arguments of installation commands. Thus we need a command parser for a single
line command which is like the implemented function parse_command in common.py.
Then we can use a parsing rule to parse a command, eg, for command apt, words
start with install should be a installation command and followed by the software
name. We can make it as a yml file like base.yml, its structrue is like this:

- command name​: installation command we need to match.
- subcommand​: subcommand we need to match in words.
- software name: ​ option arg or words.
- installation place​: option arg or words.

Here are some examples:
- command name​: apt, apt-get
- subcommand: ​install
- software name: ​ ‘words’(using parsed words, since we have a subcommand

‘install’ , so the first word in words which is ‘install’ will be excluded)
- installation place​: apt default installation place

- command name​: tar
- subcommand: ​None
- software name: ​ ‘words’(using parsed words)
- installation place​: ‘-c’(using parsed option lists)

But it is unlikely to include all possible installation commands so we can also find the
path-like variables and path-like arguments of commands. I do not know if this is
necessary, so i just write it but not making plan on this.
Output
The output should include the installation place, corresponding script command and
software name if possible.
Plan
step1. We can try to split commands from scripts first, and parse the command into
command name, words and args. Then using the parsing rule to find the software
location. If it contains variables, we just use the name not the value.
step2. Some commands may contains variables and we need to replace the
variables into its value.
step3. Towards case, if , for statement, handle the nested commands and variables.
For branch like case and if, we can give the output by branch, like

- branch : ${dpkgArch##*-} == amd64
- software name, installation place

This can be implemented by giving the parsed variables a branch property which
record its value by branch. When we need this variable as the output, we can form
the output by its possible value.

4.Weekly timeline:

a. From now on, To May 19, 2020(Before Week 1): Working on current PRs and
get started to the project. Communicating with the mentors about the project
to get better understanding of the program. Making progress on step1.

b. From May 19, 2020 , To June 16 - 20, 2020(Before First Eval): Complete
step1 and move towards step2.

c. From​ ​June 16 - 20, 2020, To July 14 - 18, 2020(Before Second Eval):Working
on step3.

d. From July 14 - 18, 2020, To August 11 - 18, 2020(Before Final Eval):
Complete the full parser.

