

Nuitka: All Python built-ins
optimized for Nuitka
(sub-org: Nuitka)

Google Summer of Code 2019 Proposal

1. About Me

1.1​ ​Basic information

● Full name : Batakrishna Sahu

● University : Sambalpur University Institute of

Information Technology

● Program : Bachelor Of Technology in

Computer Science and

Engineering

● Expected graduation : May 2020

● E-mail Address : b​ablusahoo16@gmail.com

● GitHub : https://github.com/bksahu

● Hangouts : bablusahoo16@gmail.com

● Twitter : https://twitter.com/bksahu_

● Gitter : bksahu

● Phone :

● Time Zone : Indian Standard Time (UTC +5:30)

1.2​ ​Background and programming experience
I am a third-year undergraduate student at ​Sambalpur University

Institute of Information Technology majoring in Computer Science

and Engineering. I started programming in Python one year ago

and ever since been in love with it. Apart from Python and I also

have a knowledge of Javascript, C, and Java. I use ​git for all my

Git-related needs and Eclipse for Python development. I have also

completed the ​#100DaysOfMLCode​ challenge.

 1

mailto:Bablusahoo16@gmail.com
https://github.com/bksahu
https://twitter.com/bksahu_
https://twitter.com/hashtag/100DaysOfMLCode?src=hash

1.3 Code Contribution
I have been actively contributing to open source projects in Python

and JavaScript and also been contributing to Nuitka for a while now.

I started contributing to ​Nuitka ​by doing small doc-fixes and writing

test cases. It was when working on optimizing “any” built-in which

helped me a lot to get familiar with the codebase and debugging. It

has also been a great experience getting involved with the “Chief

Creative Officer” and project founder Kay Hayen which took my

understanding of ​Nuitka ​to the next level.

Patchs Submitted:

PR Description Status

#246 Code: Adding support for "any" built-in open

#333

Tests: Added support for "only" mode in
Test runners

merged

#290 Tests: Cover more Trick Assignments

tests

merged

#247 Doc: Fixed API doc logo size merged

#250 Doc: Fixed the Isort project link in

README.rst

merged

#252 Doc: Fix developer manual typo merged

#273 Doc: Improve slots example merged

#336 Quality: Fixed the TypeError in
autoformat

merged

 2

https://github.com/Nuitka/Nuitka/pull/246
https://github.com/Nuitka/Nuitka/pull/333
https://github.com/Nuitka/Nuitka/pull/290
https://github.com/Nuitka/Nuitka/pull/247
https://github.com/Nuitka/Nuitka/pull/250
https://github.com/Nuitka/Nuitka/pull/252
https://github.com/Nuitka/Nuitka/pull/273
https://github.com/Nuitka/Nuitka/pull/336

Issues Reported:

PR Description Status

#334 Autoformat of Nuitka source code gives

TypeError and UnicodeDecodeError

open

#320 Running a single test fixed

2. Project Information
2.1 Sub-org Introduction
Nuitka ​is a Python compiler that can ​compile every construct that

CPython offers. It translates the Python code into a C program that

then is linked against ​libpython to execute in the same way as

CPython does, in a very compatible way.

2.2 Project Abstract
In ​Nuitka, ​there is a specialized node for every built-in that is to be

optimized. Every time a built-in is called in the code, this specialized

node tries to compute the expression during the compile time

resulting in early exits. ​But there are many built-ins yet to be

optimized which can have a high-performance impact in some

cases. The proposed project aims to identify all the missing Python

2.7 to 3.7 (and 3.8 eventually) built-ins in ​Nuitka and to optimize

them.

2.3 Project details
2.3.1 Current state and implementation
Currently, ​there are a total of ​69 built-ins in Python 3 and ​76 built-in

in Python 2 out of which 27 built-ins are yet to be optimized in

 3

https://github.com/Nuitka/Nuitka/issues/334
https://github.com/Nuitka/Nuitka/issues/320
https://docs.python.org/3/library/functions.html
https://docs.python.org/2/library/functions.html
https://docs.python.org/2/library/functions.html

Nuitka​. A status list of those missing built-ins can found below in

the tentative timeline section.

Every specialized built-in node has an entry in the dictionary

_dispatch_dict that corresponds to an extractor code which tries

to optimize during the compile time. For the purpose of illustration,

we will use the “any” node here:

def​ ​any_extractor​(node):
 ​return​ BuiltinParameterSpecs.extractBuiltinArgs(
 node=node,

 builtin_class=ExpressionBuiltinAny,

 builtin_spec=BuiltinParameterSpecs.builtin_any_spec,

)

_dispatch_dict = {

 ​"node"​: any_extractor,
 ...

nuitka.optimizations.OptimizeBuiltinCalls

As we can see in the ​any_extractor the ​builtin_class points to

the ​ExpressionBuiltinNode where the Python side of the

optimization takes place. These specialized nodes are the children

of ​ExpressionBases ​from where they inherit methods like

computeExpression​.

class​ ​ExpressionBuiltinAny​(ExpressionBuiltinSingleArgBase):
kind = ​"EXPRESSION_BUILTIN_ANY"
builtin_spec = BuiltinParameterSpecs.builtin_Node_spec

def​ ​computeExpression​(self, trace_collection):
return​ self.getValue().computeExpressionAny(

 Node_node=self, trace_collection=trace_collection

)

nuitka.nodes.BuiltinNodeAny

There is a method called ​computeExpressionAny in the
ExpressionBases module that tries to predict the value and does
constant folding optimization. This method returns a tuple of (node,

 4

tags, description) that gives information about which line is being
optimized in the code.

def​ ​computeExpressionAny​(self, node_node, trace_collection):
 value = any_node.getValue()

 shape = value.getTypeShape()

 ...

 return​ (
 result,

 ​"new_constant"​,
 ​"Predicted 'Any' result from value shape."​,
)

 ​# in unknown cases, allow for exceptions
 # and unknown code to execute (control flow and values

 # escaped)

 self.onContentEscapes(trace_collection)

 trace_collection.onControlFlowEscape(self)

 trace_collection.onExceptionRaiseExit(BaseException)

 ​# if there is no optimization
 ​return​ any_node, ​None​, ​None

nuitka.nodes.ExpressionBases

T​here is a code generation which points to a function that emits C
code with an entry in the ​setExpressionDispatchDict dictionary.
The C code has to have a similar implementation as of CPython.

2.3.2 Optimization
This is the most exciting part about working on ​Nuitka​. It plays a

crucial role in improving the performance of Python. ​Built-in call

prediction is the most often used optimization technique while

optimizing the built-ins. It can be thought as of constant folding but

for built-in expressions rather than constants. It is often possible in

case of built-in calls like ​len​, ​any and ​range to predict the result at

compile time rather than at runtime. For example:

 5

any([​None​, ​None​, ​None​]) ​# predictable
any([​0​]*​2000​) ​# predictable

However, the cases where high computation is involved should be

avoided. For example:

any([​0​]*​100000​) ​# predictable but high computation require

2.3.3 My Approach

I will strive to follow a ​Test Driven Development (TDD) pattern. My

general workflow while optimizing any new built-in will be like the

following:

1. Research about the built-in and specifically try to find the

answers to these questions:

● What are the ​parameters and return type shapes?

● Does the given built-in have or use slots?

● What are the side effects?

I will also go through original CPython implementation and try

to find all the possible optimizations.

2. Once I have listed all the possible optimizations then I will

move on to write relevant tests.

3. Write the optimization code.

4. Add the ​documentation.

3. Tentative Timetable

This is merely a modest sketch. I have tried to be as lenient as

possible in assigning the weekly tasks. Every week I will try to

optimize 2 to 3 built-ins in the order listed below. ​Although work on

many built-ins should not depend on external needs, it could

 6

https://en.wikipedia.org/wiki/Test-driven_development

happen that some built-in might have to be postponed because e.g.

relevant documentation of Nuitka internals is not immediately

available, or that hard to identify bugs cause delay. In these

instances, other built-ins might be started sooner, and problematic

ones might finish later, while easier ones finish early. I am planning

to dedicate at least 40 hours per week (Mon-Sat). Though if

necessary I can also work on Sundays too. During this time period,

I intend to stay in touch with my mentor and ensure that I am going

in the right direction.

● Pre-GSOC and Community Bonding (Till 26th May):
● Work my way through ​Python/C API Reference Manual​.

● Review the existing built-in optimizations.

● Research more on possible optimization for built-ins.

The following built-ins are in the form of

built-in(parameter(s)) -> returns : description

● Week 1 (May 27-31):
● all(num) -> (int, float, complex) : returns absolute

value of a number

● abs(iterable) -> (bool) : returns true when all

elements in iterable is true

● Week 2 (June 3):
● max(iterable, *iterables[, key, default]) -> (int,

float)​ : return largest element

● min((iterable, *iterables[, key, default]) -> (int,

float)​ : return smallest element

● Week 3 (June 10):
● map(function, iterable, ...) -> (map_object) : ​Applies

Function and Returns a List

 7

https://docs.python.org/3/c-api/index.html

● pow(x, y[,z]) -> (int, float) : ​returns x to the power

of y

● filter(function, iterable) -> (iterator) : constructs

iterator from elements which are true

● Week 4 (June 17):
● object() -> (object) : returns memory view of an

argument

● callable(object) -> (bool) : checks if the object is

callable

● divmod(x, y) -> (tuple) : returns a tuple of quotient

and remainder

● Week 5 (June 24):
● help(object)​ : invokes the built-in help system

● memoryview(object) : returns memory view of an

argument

● zip(*iterables) -> (iterator) : returns an iterator of

tuples

● Week 6 (July 1):
● round(number[, ndigits]) -> (int) : rounds a floating

point number to ndigits places

● sorted(iterable[, key][, reversed]) -> (list) :

returns sorted list from a given iterable

● issubclass(object, classinfo) -> (bool) : check if a

object is subclass of a class

● Week 7 (July 8):
● raw_input()​ : presents a prompt to the user

● input(string) -> (string) : reads and returns a line

of string

 8

● Week 8 (July 15):
● unichr() : return the Unicode string of one character

whose unicode code is the integer i

● reversed(seq) -> (iterator) : returns reversed

iterator of a sequence

● basestring() : abstract type for superclass for str

and unicode

● Week 9 (July 22):
● breakpoint() : drops user into debugger at the call

site

● delattr(object, name) -> (None) : deletes attribute

from the object

● reduce() : apply function of two arguments

cumulatively to the items of iterable

● Week 10 (July 29):
● property(fget=None, fset=None, fdel=None, doc=None) ​:

returns a property attribute

● cmp()​: compare the two objects x and y

● Week 11 (August 5):
● enumerate(iterable, start=0) -> (enum_object) :

returns a enumerate object

● Week 12 (August 12): ​It will a buffer period in which I will try to

clear my backlogs and add the API.

● Final week (August 19): ​This week I will be submitting my

project.

4. Other Commitments
● I have my semester exams from 20th April to 10th of May.

● I might be unavailable on 28th May and 29th May.

 9

5. Conclusion
I must mention that it has been a great learning experience

contributing to ​Nuitka and the community was really helpful in

getting me started with the development tasks. This project is really

exciting to me because it will not only give me exposure to ​Nuitka

codebase but also will increase my understanding of the inner

workings of Python and specifically CPython implementation itself.

People usually prefer C++ or Java for competitive programming but

not Python because of performance issue. I believe once all the

built-ins are optimized people will be more interested to use Python

compiled with Nuitka for competitive programming. I am very

enthusiastic to work on ​Nuitka with ​Python Software Foundation

in the ​Google Summer of Code 2019 and make some major

contributions to the community.

 10

