

CVE Binary Tool: Improve concurrency and Input Support
17.03.2020
─

About Me

Name: Niraj Kamdar

Major: B.Tech in Information and Communication Technology (ICT)

Degree level: 3rd-year undergraduate

Graduating year: 2021

GitHub: Niraj-Kamdar

IRC: nirajkamdar

Address: D-312, DA-IICT, Near infocity, Gandhinagar, Gujarat, India

Timezone: Kolkata, West Bengal (GMT+5:30)

Resume: My resume

https://github.com/Niraj-Kamdar
https://www.google.com/maps/place/DA-IICT/@23.188531,72.6267737,17z/data=!4m13!1m7!3m6!1s0x395c2a3c9618d2c5:0xc54de484f986b1fa!2sDA-IICT!3b1!8m2!3d23.188531!4d72.6289624!3m4!1s0x395c2a3c9618d2c5:0xc54de484f986b1fa!8m2!3d23.188531!4d72.6289624
https://drive.google.com/file/d/16gdNG8OewjRy5EH2YrO-GYGu0JplvTbF/view?usp=sharing

 1

Overview
I want to work on improving the output interface of the CVE Binary Tool. I really liked the
idea of scanning vulnerabilities in binary files and I have been driven to work on this tool
because I myself have developed several binary apps and It would be good if I know about
vulnerabilities and severity it contains due to dependencies so that I can choose
appropriate dependencies which reduces security risks.

Code contribution

[ADD]​ ​unittest for package: sqlite3 and version: 3.30.1
Added a simple unittest for sqlite3 version: 3.30.1 and for that I have created
test-sqlite-3.30.1.c which produces a fake binary for testing purposes.

[FIX] ​ ​csv2cve does not output CVE severity

Added vendor, product, version and severity information along with cve in csv2cve
console output.

[FIX]​ ​test_skips, test_runs and test_unknown in test_cli.py are not working on windows

Above error was due to a mismatch in output depending on os. I have fixed it by
adding a pattern in Assertion which satisfies both linux and windows.

[FIX] ​ ​Fix usage of subprocess in extractor.py

Replaced call of subprocess from fstring to array.
[ADD] ​Added codecov to Github Actions file

Added codecov to GitHub actions with every build specific flag. Now we can see the
coverage report directly inside PR.

[FIX] ​test_scanner accidentally storing previous cves
List of CVEs were getting stored between tests and results were getting passed due
to this. Now, long_test will use a new scanner object to overcome this problem.

[FIX] ​fixed test_string, test_extract and test_checker on Windows
Fixed rpm extractor in windows which wasn’t extracting the cpio file and also fixed
the problem with line ending (\r\n) in Windows for test_string.

[ADD] ​Added gstreamer checker
Added new gstreamer checker with long test cases for both ubuntu and centos.

[ADD] ​Added harfbuzz checker
Added new harfbuzz checker with long test cases for both ubuntu and centos.

[ADD] ​Added binutils checker
Fixed problem in signature of binutils checker.

https://github.com/intel/cve-bin-tool/pull/356
https://github.com/intel/cve-bin-tool/pull/477
https://github.com/intel/cve-bin-tool/pull/480
https://github.com/intel/cve-bin-tool/pull/479
https://github.com/intel/cve-bin-tool/pull/487
https://github.com/intel/cve-bin-tool/pull/510
https://github.com/intel/cve-bin-tool/pull/535
https://github.com/intel/cve-bin-tool/pull/491
https://github.com/intel/cve-bin-tool/pull/503
https://github.com/intel/cve-bin-tool/pull/494

 2

Project information

Sub-org name: ​CVE Binary Tool

Project Abstract

1. Refactoring cve-bin-tool into independent submodules:

Refactor​ cli.py​ into three separate modules: 1)​ cli.py​,​ ​2) ​version_scanner.py​, and 3)
cve_scanner.py​.

2. Make cve-bin-tool as concurrent as possible:

Use asyncio for IO bound tasks like extracting archives, downloading NVD datasets
etc. Use concurrent.futures for CPU bound tasks like scanning for version string in
input file with each checker’s version pattern regex.

3. Allow users to scan CVEs from various input format:

We already have a csv2cve option to get CVEs from the csv formatted input.It would
be nice to extend this functionality for other formats like JSON and HTML.

4. Allow users to divide CVEs in different categories and specify severity:

Add an option while generating user specified formats like json or csv to add each
individual CVE in one of the four categories [​Not yet investigated​, ​Confirmed​,
Mitigated​ ​or ​Ignored​] and also allow the user to specify severity for that CVE.

5. Internationalization of cve-bin-tool:

Add an argument option to select language or set language in config file. Also
translate readme.md, contributing.md into multiple languages.

 3

Detailed Description

First Goal​ will involve refactoring the​ ​cli.py​ file into various modules. Currently, ​cli.py
became this huge file which is scanning files and extracting versions and finding CVEs from
database and performing other operations as specified in arguments passed by the user.

I am proposing to divide cli.py into 3 modules:

1. cli.py​ - which only contains main functions and calls appropriate module as per user
arguments

2. version_scanner.py​ - which will contain scanner class and other helper functions like
extract_and_scan. New scanner module won't need ​cvedb​ because It won't be
performing database lookup for finding CVEs.​ version_scanner.py​ only takes the
path as an argument and returns a dictionary of package, vendor and versions.

3. cve_scanner.py​ - which will take package, vendor and versions as arguments and
returns all_cves. This module will use the​ ​cvedb​ ​module to perform database
lookup.

Question​ -​ Dividing ​cli.py​ into​ cli.py​ and ​scanner.py ​makes sense but why do we need to
divide functionality of ​scanner​ into​ version_scanner​ and ​cve_scanner​?

Reason for this is the introduction of a general input_engine which will take a csv, json or
html file and make a dictionary containing package, vendor, versions and other user
specified triage values. So, when we use input_engine, scanner.py function can be skipped
completely and we can use cve_finder functions on the dictionary provided by input_engine
directly.

Dividing modules like this will make each module independent of one another. Integration only
happens in cli.py. cli.py will import each of these modules and use it according to arguments
provided by the user.

Second Goal​ will involve refactoring code such that it can be run as concurrently as
possible. ​Extractor.py ​currently uses many subprocess calls. We can use asyncio’s
subprocess function to make it run asynchronously. I will use ​aiofiles ​to make ​strings.py
and ​input_engine.py ​asynchronous. Since scanning for the version pattern using every
checker is a CPU bound task, I am going to use a process pool to leverage multiple cores. I
will use ​aiosqlite ​to make database operations asynchronous. I am going to use ​aiohttp ​or
parfive ​module to download nvd datasets concurrently.

 4

Third Goal​ will involve adding​ input_engine​ to handle various input and triage data.
Currently, ​csv2cve.py​ is a separate module which contains code from parsing data from
CSV to finding CVEs from database and showing it. We can implement more general
input_engine​ module which will parse every data format supported by cve_bin_tool (csv,
json and html) and create dictionary of package, vendor, versions and other user specified
triage values and give it to ​cve_scanner​ which will find all CVEs and also handles triage data.

Above, UML diagram explains general flow from user calling ​cli.py​ with arguments to
output_engine​ displaying output to the user.

 5

Forth Goal​ will involve taking user feedback about vulnerabilities. Add an option while
generating user specified formats like json or csv to add each individual CVE in one of the
four categories [​Not yet investigated​, ​Confirmed​,​ ​Mitigated​ ​or ​Ignored​] and also allow
the user to specify severity for that CVE. This user specified data will be stored as a
separate column in csv or as a separate attribute in json so that we don’t have to maintain
a separate structure. We will only use these triage attributes while displaying output. We
can take these attributes interactively with the help of CLI tools like ​PyInquirer​ or ​clint2​.

Fifth Goal​ will involve internationalization of the cve-bin-tool. We can do this by following
this blog: ​A complete guide to i18n in Python​ mentioned by ​@terriko​. We can also convert
our documentation in different languages using these i18n tools. Once we setup locale
directory for different languages, we can provide an option to set output language. We
have to take care that vendors and products don’t get translated into the target language.
Translated output will be the same as above figures just output language will be changed.

https://pypi.org/project/PyInquirer/
https://pypi.org/project/clint2/
https://www.mattlayman.com/blog/2015/i18n/
https://github.com/terriko

 6

Milestones

I. Community Bonding (May 4 - May 31)

● Actively bonding with the community through ​Gitter channel​.
● Fix existing bugs, help merging pending PRs and closing issues.
● Discussing the proposed idea with mentors and other members of the

organization
● Finalizing all the deliverables with the mentor and adding/removing extra

work wherever needed
● Creating Milestones on GitHub projects using Kanban template.

II. Week 1 (June 1 - June 7)

● Refactoring cli.py into cli.py and scanner.py.
● Remove compiler dependency from test_scanner.

III. Week 2 (June 8 - June 14)

● Refactor cvedb into cve_scanner and cvedb
● Refactor cvedb test and write cve_scanner test.

IV. Week 3 (June 15 - June 21)

● Make extractor module asynchronous.\
● Rewrite Unittest of extractor to support asyncio.

V. Week 4 (June 22 - June 28)

● Use aiohttp to download nvd dataset concurrently.
● Make cve_scanner, cvedb and version_signature asynchronous using

aiosqlite module.

VI. Week 5 (June 29 - July 5)

● Complete remaining tasks from Week 4
● Write unit test for cvedb, cve_scanner and version_signature.
● First Evaluation Period​ from​ June 29​ to ​July 3

VII. Week 6 (July 6 - July 12)

● Use aiofiles to concurrent strings module
● Use a process pool to parallely execute checkers.

https://gitter.im/cve-bin-tool/community#

 7

VIII. Week 7 (July 13 - July 19)

● Make version_scanner fully asynchronous.
● Test all new asynchronous packages.

IX. Week 8 (July 20 - July 26)

● Create asynchronous json and csv parsers in the input_engine module.
● Write unit tests for these two functions.

X. Week 9 (July 27 - August 2)

● Create a HTML parser that parses previously generated html data which may
contain triage data.

● Write a unit test for this new html parser.

XI. Week 10 (August 3 - August 9)

● Preparing for internationalization of CVE Binary Tool.
● Mark every string in the source code we want to have translation.

XII. Week 11 (August 10 - August 16)

● Add options for extracting messages and compiling catalogue in setup script
● Write unit-tests for the above functionality.

XIII. Week 12 (August 17 - August 23)

● Parallelize pytest as much as possible.
● Fix small remaining issues
● Make sure everything works fine in Windows.

XIV. Final week (August 24 - August 31)

● Document all code, refactor code wherever needed, wrap up any remaining

work and ​submit final code for evaluation.

 8

Stretch Goals
I would like to work on automating the checker creation process after GSoC completes or
my major goals get completed before GSoC deadline. This will include the following three
functionality.

1. Package downloader which downloads packages for the different distro
2. Package Analyser which analyzes strings of these packages and tries to guess the

best version pattern string and guess_contains string from the packages according
to preconfigured rules.

3. Test module generator which generates modules and files necessary for testing this
checker.

This will make new checker creation very easy because we just have to provide the vendor
package pair of the checker we want to implement. I have already written a few scripts for
the same. It can be found in my github repo ​cve-bin-tool-helper-script​.

Other commitments
From mid-July onwards various companies will be visiting my college for placement drive,
so from mid-July onwards I may not be available on some days due to interviews other than
this I will be devoting 7-9 hours daily for this project.

Why me?

Other than being a Python developer for over 2 years, and a passionate open source

contributor, I believe that I am well suited for this project, because I have already worked

on a CLI project where I have used​ ​PrettyTable​ for nice looking tabular output and

PyInquirer​ for interactive CLI interface. You can see this project ​here​.

I have also done web development using Flask, that’s why I am very familiar with Jinja

templating. So, I will be able to create nice looking HTML easily.

I am also good with project management. Currently, I am managing a project named
Question-paper-generator​ which is a Website written in Flask with Jinja templating.

Since I have worked on many Python projects which had many overlapping requirements
with the CVE Binary Tool, I believe I would be the ideal candidate to work on the CVE Binary
Tool project.

https://github.com/Niraj-Kamdar/cve-bin-tool-helper-script
https://pypi.org/project/PrettyTable/
https://github.com/CITGuru/PyInquirer
https://github.com/Niraj-Kamdar/PlayStore-Database
https://github.com/Niraj-Kamdar/question-paper-generator

