
CVE Binary Tool:

Building checkers/mappings for known

package lists

About Me

Name: Muhammed Suhail A H

University: Government Engineering College, Palakkad

Program: Bachelor of Technology in Information Technology

Year: 3rd year

Email: msuhailbh07@gmail.com

GitHub: BreadGenie

Timezone: Indian Standard Time (GMT +5:30)

I’m a 3rd year student pursuing Information Technology at GEC Palakkad, Kerala.

I’ve worked mostly with JavaScript/TypeScript for my projects. I set foot into Open

Source by developing a Telegram bot. It was fun, gratifying and watching my

friends and others using it and that made me realise how fulfilling it is to have

something you build being used by others. I also love to empower people and

that’s the reason I took up the role of Program Manager for OpenHack’20  at

FOSS-Cell-GECPKD, which was a program for programmers of all levels to set foot

into Open Source. I’m also a member of RocketMeet, a meeting scheduling tool,

where I worked on the client side.

I will be applying for GSoC at CVE Binary Tool because I’m interested in learning

how a CLI tool works and how it’s inner workings are connected to different

components of the tool and I like how cve-bin-tool is used as a security measure in

a wide variety of development areas. I would very much like to work on a real

world python project and want to dive deep into the world of python

development and I think this will be a great opportunity. And when I contributed

mailto:msuhailbh07@gmail.com
https://github.com/BreadGenie
https://github.com/BreadGenie/van-tg-bot
https://github.com/FOSS-Cell-GECPKD
https://github.com/RocketMeet


to cve-bin-tool I got the opportunity to learn more about python and got excited

at working on the project. I also want to refine my coding skills and best practices.

Since I want to help people there’s no better venue than a helpful tool used by

many to avoid potential CVEs in their works. And it made me realise contributing

to CVE Binary tool will help people out better and would make me much glad

realising my work would be used by many.

I’m looking forward to working on cve-bin-tool in the future, as a contributor and

maybe work on another project at cve-bin-tool for my final year capstone project.

Contributions

● Pull Requests

○ Add Checker for dnsmasq (#1076)

○ Add Checker for pspp (#1108)

○ CSV file of requirements.txt for CVE input (#1113)

○ Add Checker for ntp (#1127)

○ Add condensed downloads test (#1131)

● Opened Issues

○ New Checker: dnsmasq (#1075)

○ New Checker: pspp (#1107)

○ Unknown CVEs in output when there's at least one CVE in any of the

packages and no CVEs in others (#1132)

https://github.com/intel/cve-bin-tool/pull/1076
https://github.com/intel/cve-bin-tool/pull/1108
https://github.com/intel/cve-bin-tool/pull/1113
https://github.com/intel/cve-bin-tool/pull/1127
https://github.com/intel/cve-bin-tool/pull/1131
https://github.com/intel/cve-bin-tool/issues/1075
https://github.com/intel/cve-bin-tool/issues/1107
https://github.com/intel/cve-bin-tool/issues/1132


Project Information

● Sub-org Name

CVE Binary Tool

● Project Abstract

Currently CVE Binary Tool’s binary scanning is slow and a software manifest

of known packages can be used for quick scanning for CVEs as an early

warning system. Here a database is built primarily of top packages from

PyPI and the core packages of popular Linux distros like Ubuntu, Fedora,

CentOS etc. and a parser that reads the packages from the list and maps

them with the database. The checkers for these packages are created

alongside.

Also to improve user experience the creation of a backported fix checking

utility can be made. It checks the packages with CVE in the scan and a

database with the data including backported fix and provides an output if

the CVE is fixed.

● Detailed Description

Goal

● Create databases for the popular packages from PyPI and core

packages of popular Linux distros.

● Create a parser to read the list of known packages and map them

with the databases for a quick CVE scanning.

● Create checkers for the above mapped packages.

● Create a tool to prompt the user of the vendor-package pairs if the

package isn't found in the mapping.

● Create a tool to output the backported fixes in a package if there is

any while scanning.



Implementation

Mapping Database

A usual binary CVE scan needs vendor-product pairs but here it may not be

possible to get vendor info from requirements.txt or through listing installed

packages of a distro. So a database for top packages of PyPI and core

packages of Ubuntu, Fedora, CentOS etc. with their CVE Number are

created for mapping. The other CVE details (Severity, CVE Score etc) can be

queried from cve_severity table in cve.db.

The mapping database tables would follow the below schema

The schema is similar to the cve_range table in cve.db (except vendor). But

here the package name could vary from what it is in the NVD database and

is thus modified according to the list we will map with.



Parser

A parser is built for mapping the package list and the database.It either

checks through requirements.txt or lists out installed packages in the

system and reads through them for mapping.

We can handle this by providing a flag such as -m or --manifest for the

cve-bin-tool and the parameters can be the path to the requirements.txt or

left empty if it’s to check the installed packages in the system.

For python packages we may not be able to acquire the version information

from requirements.txt. So for that we could access the package details of

installed packages in the system by executing pip list or pip freeze

using the subprocess module and extract the product name and version of

the installed packages by comparing it with the requirements.txt and use it

to map on the created database.

Similarly for Ubuntu core packages we could run dpkg-query -l in the

present working directory using the subprocess module and manipulate the

output for mapping.

We could do the same with Fedora using dnf list installed and for

CentOS using yum list installed .

Test Driven Development method is used for writing tests along with parser

construction. The parsers will be documented along with the

implementation.

Checkers

Checkers for all the possible packages compiled are made along with the

construction of databases and parsers. Since there probably would be 100+

packages to write checkers for, they will be created according to the priority

https://docs.python.org/3/library/subprocess.html
https://docs.python.org/3/library/subprocess.html


among the packages. There will be almost an equal number of checkers for

PyPI top packages, Ubuntu, Fedora and CentOS core packages if there are

enough packages with not so hard signatures.

Tool to recommend potential vendor-product pairs

When we do the quick scan there’s a big possibility that we would miss

scanning plenty of packages. So here we could output the potential

vendor-product pair of the missed package by querying in cve.db and

output them to the console. There could be chances for it to miss the mark.

But it would definitely be useful for the users to know if a package escaped

the mapping and it’s vendor-product pair can be used by the user for

further scanning.

Backported Fixes

There are certain packages with a version having CVEs but the fix has been

backported due to issues like backward compatibility. So the existence of a

functionality to notify the users if a certain package that was scanned

doesn’t have a CVE according to it’s version since it’s fixed, would be a

helpful feature for the users so that they don’t have to update those

packages.

A possible way to implement this feature would be using RedHat CVE

Database and similar CVE Databases that certain distros keep to track CVEs

(scraping or downloading the Database if possible) and then use that data

and compare with the packages that have CVEs according to the CVE Binary

Tool.

https://access.redhat.com/security/security-updates/#/cve
https://access.redhat.com/security/security-updates/#/cve


● Weekly Timeline

● Pre GSoC

○ Learn concepts related to the project in depth.

○ Read and discuss how to add the backport recognition

functionality since the amount of work can’t be estimated right

now.

○ Work on issues to get a grasp about the whole codebase or

related parts.

● Community Bonding Period (May 17 - June 7)

○ Bonding with the community actively.

○ Discussing and refining the project idea with mentors.

● 1st Week and 2nd Week (June 7 - June 21)

○ Creating the mapping Database for top PyPI packages.

○ Build a parser to read the listing of installed PyPI packages with

the help of requirements.txt for mapping.

○ Create checkers for the above PyPI packages.

○ Create a tool to warn the users if a vendor-product pair is not

found while mapping.

○ Document and write tests for the parser

● 3rd Week and 4th Week (June 21 - July 5)

○ Creating the mapping Database for core Ubuntu packages.

○ Build a parser to read the output of dpkg to map the packages.

○ Create checkers for the above packages.

○ Document and write tests for the parser

● 5th Week and 6th Week (July 5 - July 19)

○ Creating the mapping Database for core Fedora packages.

○ Build a parser to read the output of dnf to map the packages.



○ Create checkers for the above packages.

○ Document and write tests for the parser

○ Preparing code for evaluation.

● 7th Week and 8th Week (July 19 - August 2)

○ Creating the mapping Database for core CentOS packages.

○ Build a parser to read the output of yum to map the packages.

○ Create checkers for the above packages.

○ Document and write tests for the parser

● 9th Week and 10th Week (August 2 - August 16)

○ Implement a utility to check backported CVE fixes and report

them in the output if the CVE is fixed in that specific version.

● Buffer Week (August 16 - August 23)

○ Fix bugs if there are any.

○ Improve tests.

○ Improve documentation.

● Stretch Goals

○ Adding core packages of other popular Linux Distros (SUSE,

Arch Linux) and creating their checkers if the work is completed

faster than I have projected.

(This idea can be used as a stretch goal or as a post GSoC

contribution)



Other Commitments

● I’ll have my final exam probably in July (not confirmed). So I won’t be able

to put as much hours into the project at that time, so I’ll be working a bit

longer in other weeks to balance it.

● CVE Binary Tool is the only organisation I’m applying for.


