
SciPy: Revamp scipy.fftpack

Project Abstract
scipy.fftpack provides several variants of fast fourier transforms for use in numerical and
scientific computing applications. Currently this a python wrapper around it’s namesake, the
fortran fftpack library. However, a number of concerns exist about the precision and
performance of the current fft implementations. Thus, it is desirable to allow 3rd party
libraries to be used instead of fftpack, allowing for improved performance and accuracy.

This project would first design and implement a backend interface which will allow different
libraries to be called underneath the scipy.fftpack interface. Then a selection of 3rd party
fft libraries can be adapted to implement this interface and provide users with a range of
backends to choose from. These backends may be selected at runtime to accelerate existing
users of the scipy.fftpack interface without any changes to their code.

Detailed description

Fast fourier transforms (FFTs) are a class of algorithms which compute the discrete fourier
transform of an array in O(n logn) time. FFTs are used heavily in scientific computing and
signal processing both because they allow analysis of a signal in the ‘frequency domain’ and
because it can reduce the algorithmic complexity of convolution-like operations from O(n2) to
O(n logn).

There are many highly optimised implementations of the FFT, including portable libraries like
FFTW and platform specific libraries such as intel’s mkl fft and nvidia cuFFT (available in 1

python through CuPy). Both FFTW and mkl fft support multithreading to accelerate their
transforms and cuFFT even employs GPGPU acceleration. It would be good if SciPy users
could leverage these implementations without having to change their code. However, none
of their licenses are compatible with SciPy and so they cannot be included directly.
Moreover, there is no “one size fits all” solution - the best library may vary by use case and
available hardware. This can be solved if SciPy allows these libraries to expose a
scipy.fftpack compatible backend and provide a method for the user to select it at
runtime. This will allow the user to decide the best backend for their use case, as well as
avoiding licensing restrictions.

Design goals
These could be thought of as requirements but since there is much discussion left to be had,
I would like to just give these as a starting point. This should help give context to the

1 Technically portable but consider: https://software.intel.com/en-us/articles/optimization-notice

https://software.intel.com/en-us/articles/optimization-notice

decisions made in the discussion of the design here but are free to be adapted in response
to further discussion.

1. Any code that works with the current fftpack should work with all backends
2. Conversely, any code that doesn’t work with the current fftpack should not work with

any other backends.
3. Performance should be as close as possible to using the libraries own API directly
4. It should be possible to change the backend at runtime, after fftpack is imported
5. Backends should be as configurable as possible
6. It must be possible to register a backend without SciPy knowing about the package

beforehand.

Rationale
The reasoning behind the first goal is extremely fundamental. It means that a user can take
existing code and use a different fft backend without requiring any further changes to their
code. This would absolutely be a hard requirement and I don’t expect that to change, even
after further discussions.

I anticipate the second goal may be rather more contentious though, especially since long
double support in pyFFTW was listed as a reason in favour of backends. However, I think
that the backends should be as interchangeable as possible. Whereas, any code relying on
long double support will need to be run with FFTW. I agree with what Ralf Gommers has
said on the mailing list: “if your code has become specific to one backend, then you may as
well use that backend directly right?”

As for goal three, I expect that someone motivated to search around for different fft
implementations is most likely concerned about performance. We should want
scipy.fftpack to be the go-to option and not just a compromise for when you don’t have
time to rewrite your code. That means committing to good performance.

Goal four is perhaps best motivated by a use case: consider a user who has profiled their
code and found that different points within their program benefit from different fft backends.
This would allow them to change these out whilst the program is already running. For
example, cuFFT may only be profitable for really large FFTs due to memory transfer
overheads. Additionally, I expect this flexibility will make it easier to test and benchmark
multiple backends at the same time.

The fifth goal may be difficult to attain but I still think is important. Both pyFFTW and mkl-fft
allow the number of threads they use to be configured and pyFFTW has its planner effort as
well. For some use cases these may be very important to performance. However, it would be
far too easy for these backend specific configurations to violate the second goal, so caution
will be required.

Components of the design

Front end
Generally speaking, this project doesn’t aim to change the front end of scipy.fftpack at all.
The meaning of calls to the current scipy.fftpack functions should not change. Moreover,
if any changes are made to the interfaces, they should be completely backwards compatible
and never break existing code. Anything else would violate the first goal of this project.

Back end
In its simplest form, each backend would be required to exactly mirror the current fftpack
interface. This would simplify the front end implementation as all it has to do is to forward the
function calls down to the backend

 def fft(x, n=None, axis=-1, overwrite_x=False):
 return _backend_module.fft(x, n, axis, overwrite_x)

However, this fails to meet the design goals in a few ways. First, several fftpack
replacements are missing the real-to-real transforms and so this could break the user’s
code. Instead, we would have to implement a fallback strategy. This could either mean
enforcing a limited subset of functionality and implementing the other functions in terms of
those (in principle only one fft and ifft are required but we could be more strict). OR, we
could simply use fftpack as the backend in those cases. Some experimentation will likely be
required to see what works best. Either way, this fallback mechanism might look something
like

 def _set_backend(backend_module):
 try:
 _dct_func = backend_module.dct
 except NameError:
 # either fftpack_backend.dct or a translation to fft
 _dct_func = _fallback_dct
Where the dct function now has to call _dct_func instead of calling the backend directly.

 def dct(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False):
 return _dct_func(x, type, n, axis, norm, overwrite_x)

Secondly, what if the backend supports a different set of numpy dtypes? For example
pyFFTW supports long doubles but In keeping with current fftpack behaviour, this should
result in an error. Otherwise, calling code would break when used with the fftpack backend.
Similarly, float16 values should always be promoted to float32 before the transform. So
depending on the community’s reaction, we may also want to add some pre-processing of
the inputs to enforce these restrictions.

 def dct(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False):

 # From current implementation, also converts float16 to float32
 x = _asfarray(x)

 if x.dtype not in (np.float32, np.float64,
 np.complex64, np.complex128):
 raise ValueError("type {} is not supported".format(x.dtype))

 return _dct_func(x, type, n, axis, norm, overwrite_x)

Installing back ends
As for how to install backends, there are at least 3 ways that a user might want to install a
new backed. First, since it should be possible to change back ends at runtime, the user must
be able to set the backend from within python. We should provide a function set_backend

that the user calls, after which any calls to scipy.fftpack would use their specified
backend. This could be done similar to matplotlib backends where a fixed set of backends
are treated as special and referenced by name,

 fftpack.set_backend('pyfftw')

and any other custom backends would be accessed by a string of the form
'module://my_backend'. However, this does mean adding implicit package dependencies
where the user might otherwise expect the named backends to come as default. This would
either need to be made clear in the documentation; or another option is to simply require the
argument to be a module object. In this model, the user must import the library themself

 import pyfftw.interfaces.scipy_fftpack as fftw_pack
 fftpack.set_backend(fftw_pack)

Both options are reasonable in my opinion, though the second option is is slightly more
verbose from the user’s perspective.

We should also add an environment variable such as SCIPY_FFTPACK_BACKEND that the
user can set before calling their program. This would allow users to switch backends without
any source code modifications whatsoever; they just need to call their program like so

 $ SCIPY_FFTPACK_BACKEND="pyfftw" python process.py

and with no further modification, they can leverage the new backend. This would require
adding to fftpack’s initialisation code

 backend = os.environ.get('SCIPY_FFTPACK_BACKEND')
 if backend is not None:
 fftpack.set_backend(backend)

We could also add a scipy dotfile such as ‘.scipyrc’ that allows the user to specify their
backend globally. This would mean keeping an entry in the config file:
 fftpack_backend pyfftw

And then when scipy is initialised we should read the value from the dotfile. If combined with
the environment variable then one would have to be assigned priority

 backend = (os.environ.get('SCIPY_FFTPACK_BACKEND') or
 _dotfile.get('fftpack_backend'))
 if backend is not None:
 fftpack.set_backend(backend)

https://matplotlib.org/faq/usage_faq.html#what-is-a-backend

However, supporting this would mean that whenever fftpack is initialised we perform extra
file system calls which might be surprising for a user that isn’t using this feature. Since there
is no precedent within scipy for such config files, it would absolutely need to be discussed
before heading down this direction.

Configuring back ends

In order to leverage the best performance from the back ends, it is desirable for users to
configure various aspects of the backend. This might include the default number of threads
to run on, or even to configure more backend specific options like FFTW’s planning stage
which is wasteful for one-off ffts but potentially crucial to the performance of many repeated
ffts. In both of these cases, the user is able to configure this already through the use of
package specific environment variables and configuration interfaces. However, it may be
valuable to provide a generic interface so the user’s code doesn’t need to assume which
backend is being used.

This does somewhat conflict with our goal that users code should be independent of the
backend. Not all of the backends will fully support the same configuration options. However,
this could be made to work if the options are phrased as requests or limits and not as
requirements. For example, instead of a num_threads option we should have max_threads
since backends without multithreading will always use 1 thread. Additionally, it might be
possible to include FFTW’s planner_effort if rephrased as a hint for whether you call the
same ffts regularly. The fftw backend will then take this hint and translate it into an
appropriate planner effort enum for internal use. This is tricky, however, as it might mislead
users into thinking every backend will respond to these options.

For the user to set their preferred config, we could either add global state which is modified
via an update_config function or family of functions. Alternatively, these could be passed
as a set of additional arguments to each of the front end functions. Or indeed, both of these
methods could be useful together with the global option providing the defaults and any
function parameters overriding the global config. All of these will be very straightforward to
implement in code but the main issue is just deciding what config options should be allowed.
I anticipate that if everything is given a sensible default behaviour then it would be safe to
start conservatively and add more config options slowly over time without breaking
backwards compatibility.

