
Mission Support System: Collaborative editing of flight path in

real-time

About Me

Name: Shivashis Padhi, (Github/Bitbucket/IRC username) - plant99, mss-devel.slack.com - shiv
University info:

University Name: National Institute of Technology, Tiruchirappalli
Major: Computer Science and Engineering
Current Year: III year
Expected Graduation date: May 2020
Degree: Bachelor of Technology

Contact info:

Homepage: https://plant99.github.io
Email: shivashispadhi@gmail.com
Alternate Email: 106116085@nitt.edu

Time Zone: Indian Standard Time (GMT + 5:30 hours)
Link to resume: https://plant99.github.io/files/resume_shivashis_padhi.pdf

Why I chose this idea to submit a proposal on?

Having written ~7000 lines of code in Python, I can safely say it’s my favorite programming language. So I

had no doubt that contributing to a Python based project would be the easiest and most rewarding for me.

PSF was my first priority when I planned to apply for GSoC. Besides computer science, I spend a good

amount of my spare time browsing through research updates in the area of Geo-sciences. Thus, when I

stumbled upon mss, I decided to submit a proposal for one of its ideas.

I have around 2 years of experience with development of real-time applications as a student developer. In

the past, I have worked with chat and notification modules, some of which were deployed to production

logged ~680 users and >25000 games requests during Code-Character 2019, which was online for 21 days.

This proposal has similar algorithms incorporated to handle connections and network I/O.

During my internship at Flytbase, I designed and developed a video-chat platform for human and drone

clients, with different permission levels to publish/view the streams using core concepts of WebRTC. A big

issue was to build an interface for an onboard device like Raspberry PI to publish stream over WebRTC,

because there were no reliable python clients for WebRTC. I wrote a python client with websockets,

asyncio, and Flask, to receive a stream from web-browser, process the frames, and send it back to

web-browser through websockets and eventually WebRTC clients. The architecture is represented in the

following illustration:

https://github.com/plant99/
https://bitbucket.org/plant99/
https://nitt.edu/
https://plant99.github.io/
mailto:shivashispadhi@gmail.com
mailto:106116085@nitt.edu
https://plant99.github.io/files/resume_shivashis_padhi.pdf
https://github.com/plant99/ProPart/blob/master/app.js#L137
https://github.com/delta/codecharacter-server-2019/blob/master/api/utils/socketHandlers.js#L8
https://www.pragyan.org/19/home/events/byte_hoc/code_character/
https://flytbase.com/about-us/

Certainly, the best of my work till date as a student developer involved concepts related to this project. I

look forward to making the best use of my experience, interests, and abilities to work with MSS on this idea

and contribute a lot to open source over the summer, if given a chance.

Code Sample

From the time PSF’s sub-org list was released, to this date, I have worked with mentors from MSS to discuss

issues/features and successfully got my work accepted. Following is a list of links to PRs I have worked on,

sorted by date.

Note: PRs marked with a * are major ones.

https://bitbucket.org/wxmetvis/mss/pull-requests/597/fix-pep8-indentation-exception/diff

https://bitbucket.org/wxmetvis/mss/pull-requests/599/renamed-_tests-utilspy-to-_tests/diff

https://bitbucket.org/wxmetvis/mss/pull-requests/601/update-gitignore-for-project-structure/diff

https://bitbucket.org/wxmetvis/mss/pull-requests/603/add-delete-and-insert-functionalities-in/diff *

https://bitbucket.org/wxmetvis/mss/pull-requests/604/fix-pep8-trailing-space-exception/diff

https://bitbucket.org/wxmetvis/mss/pull-requests/607/show-approximate-coordinates-of-point-on/diff *

https://bitbucket.org/wxmetvis/mss/pull-requests/609/enhancement-of-insert-waypoint-function-to/diff *

https://bitbucket.org/wxmetvis/mss/pull-requests/617/stable/diff

https://bitbucket.org/wxmetvis/mss/pull-requests/616/i324/diff *

Project Information

Sub-org name:
Mission Support System - MSS

https://bitbucket.org/wxmetvis/mss/pull-requests/597/fix-pep8-indentation-exception/diff
https://bitbucket.org/wxmetvis/mss/pull-requests/599/renamed-_tests-utilspy-to-_tests/diff
https://bitbucket.org/wxmetvis/mss/pull-requests/601/update-gitignore-for-project-structure/diff
https://bitbucket.org/wxmetvis/mss/pull-requests/603/add-delete-and-insert-functionalities-in/diff
https://bitbucket.org/wxmetvis/mss/pull-requests/604/fix-pep8-trailing-space-exception/diff
https://bitbucket.org/wxmetvis/mss/pull-requests/607/show-approximate-coordinates-of-point-on/diff
https://bitbucket.org/wxmetvis/mss/pull-requests/609/enhancement-of-insert-waypoint-function-to/diff
https://bitbucket.org/wxmetvis/mss/pull-requests/617/stable/diff
https://bitbucket.org/wxmetvis/mss/pull-requests/616/i324/diff
https://bitbucket.org/wxmetvis/mss/wiki/GSOC2019/Overview

Project Abstract:
Mission Support System is a flight planning software which a researcher can use to analyze predicted

atmospheric data, and plan a flight-path with 3D waypoints. The software in the present state allows

editing by a single user per flight-path. To share this work, one has to export the work as a $name.ftml

file and send it to other researchers for further planning. This back and forth communication not only

consumes a lot of human efforts and time, but also can be frustrating when the number of researchers

involved in a project is bigger, say >=3.

I propose a solution to this problem, the development of Mscollab which stands for ‘Mission Support

Collaboration’. Mscollab would facilitate real-time, collaborated editing of flight-paths by authorized

users. By design, it will also provide a chat facility for the users who collaborate on the project. Its UI would

be a part of msui, the core User Interface module of mss. It will additionally provide insights about changes

and the users who created the changes, for analytics purpose. Mscollab-server will be a standalone

server built with Python, Flask, and python-socketio.

Project Description:

A brief introduction to MSS software:

Mission Support System provides a suite which can be used by atmospheric research scientists to plan a

research flight. It has two essential components

● msui

It’s the core UI module of mss software, this shows atmospheric data on a 2D map. A researcher has

to analyze the data and mark the waypoints (a set of points which the research aircraft has to pass

through to collect experimental data).

● wms/mswms

WMS stands for Web Map Server, which essentially serves maps given origin coordinates and other

geographic parameters. A sample wms server can be setup with ‘mswms’, and some demo data

which can be setup easily as per instructions here. In a single sentence, mswms serves the data to

be displayed by msui.

In the current state of mss, the waypoints created by a researcher is volatile in nature. To save it, one has

to export the waypoints to a ‘.ftml’ file (by default) which is saved and accessed by user through fs API.

● So, to share the flightpath with other researchers, one has to use an external channel. This can

cause considerable waste of time and efforts when working in a big team.

● Plus, the changes made by members get mixed up which creates a lot of confusion down the line.

Thus, a collaboration tool is highly necessary to synchronize individual work of group members and keep

track of changes made in the process.

Mscollab:
Mscollab’s design solves the aforementioned problems, in a simple and structured fashion. Following is a

helicopter view of the same.

http://flask.pocoo.org/
https://python-socketio.readthedocs.io/en/latest/intro.html
https://mss.readthedocs.io/en/stable/deployment.html#demodata-simulated-data
https://pyfilesystem2.readthedocs.io/

Mscollab has four major components:

● Data Models / Classes

● Main App

● APIs

● UI

Among these, the first three modules would be developed within Mscollab server. UI of this software

would be integrated with msui module of mss software.

Data Models

The project needs six basic models named:

● Connection

This class is defined to keep track of the socket connections maintained by users.

u_id: user-id

s_id: socket-id

● User

This class represents an user of mscollab.
id: user-id

email: email-id of the user

name: Screen name of the user

password: bcrypt hashed password

● Permission

This data represents the authorization of an user to collaborate on a file.

u_id: user-id

f_id: file-id

access_level: enum[“admin”, “collaborator”, “viewer”]

● Message

Message represents a single message unit, linked with a chat(further linked to a file).

u_id: user-id

f_id: file-id

text: message content

created_at: used to order the messages in a conversation

● Change

Change represents a change in .ftml file submitted by an authorized user.

u_id: user-id

f_id: file-id

content: ‘diff’ of file made by the user

created_at: used to sort the changes w.r.t time

● File

File represents an .ftml file.

id: to be used as fileId

path: filepath - unique

description: description of the file, stating its purpose of creation.

APIs

Some of the major APIs and their functionalities are listed as follows:

● Socket API

○ connect_user

Checks email-id and password, if authorized saves user-id and socket-id to Connection table.

○ disconnect_user

Removes connection associated to the socket

○ message

Notifies main app about incoming message from one of connected socket clients.

○ emit

Emits ‘file change’ or ‘message’ events to other users to change their local data in real-time,

sent by main-app.

○ is_online

Used to check if an user is online by looking for an entry in connection

● User and Authentication API

○ add_user

Add email-id, name, and password to ‘User’

○ remove_user

Remove user from ‘User’ table.

○ change_password

Change password of user

○ authenticate

Checks if an email-id and password passed as parameters are valid, and matching with one in

the database.

○ user_exists

Checks if an email-id exists in ‘User’

● File API

File API will be based on fs library, and the storage options can be modified as per need. A

configuration file would be used to control the same.

○ file_save

Adds an entry in the ‘Change’ table.

‘$name.ftml’ is tweaked to append ‘Change-Id’ to change-log attribute inside each

<Waypoint/> tag. This would help to display information specific to this waypoint in UI.

Saves the new file atomically, (this process will be made efficient by saving only the ‘diff’ at

the right file cursor)

○ get_file

Returns file as ASCII string or buffer, as instructed in the parameter.

○ get_authorized_users

Returns a list of users who are authorized to collaborate on file identified by f_id/f_name.

○ get_change_log

Returns a list of changes by collaborating users sorted by timestamps from Change table

with f_id as key.

○ exists

Returns boolean value if the file with ‘file-name’ exists or not.

○ list

Returns an array of ‘File’ data with permission level for each file. This data can be used to

view projects dashboard in client’s side, as a list of projects the user is admin of and another

list of projects the user is collaborating on.

○ delete_file (access_level = admin)

Deletes file from file-path and ‘File’ table, preferentially delete entries related to this file

from ‘Message’, ‘Permission’, ‘Change’.

○ add_permission (access_level = admin)

Checks if user with user-id exists. If yes, add user-id and file-id to ‘Permission’ table.

○ remove_permission (access_level = admin)

Checks if user with user-id exists. If yes, remove entries of ‘user-id and file-id together’ in

‘Permission’ table.

○ rename_file (access_level = admin)

Rename a file, would basically change ‘path’ in ‘File’ table corresponding to file-id.

● Chat API

○ message_save

Adds an entry in the ‘Message’ table.

https://pyfilesystem2.readthedocs.io/

○ get_messages

Return an array of messages corresponding to a file_id (chat_id as each file can have one

‘Chat’ entry), sorted by ‘created_at’ values.

Main App

This module orchestrates all other services and APIs and regulates the data-flow.

A pseudo-code of main app is as follows:

import socketManager
import fileManager
import authManager
import chatManager
import Flask
app = Flask(__name__)

@socketManager.sio.on('connect')
def connect(sid, env):

 # check auth here by authmanager
socketManager.connect_user()

@socketManager.sio.on('disconnect')
def connect(sid, env):

socketManager.disconnect_user()

use decorator to check auth
@sio.on('message')
def message(sid, data):

if data.type == "file":
 # fileManager handles file here
 pass

else:
 # data.type = message
 # chatManager handles messages here

pass

app.route('/user')
def user_handler():
 args = request.args
 # authManager handles the rest
 # would be used to add remove user, etc

UI

UI module of mscollab will be integrated with msui, the core UI module of mss software. The temporary

files would be stored in ‘~/mssdata’ directory or as configured in ‘mss_wms_settings.py’.

A list of projects which the user is working on can be displayed as illustrated below, which can be activate

by clicking on Tools->Mscollab projects list, on MSS’ main window.

Double clicking on a project opens the mscollab-ui window as shown on page 11.

Project

● A ‘project’ is a data storage model implemented by popular code IDEs, like vscode,pycharm etc.

● In this case, instead of treating a ‘$filename.ftml’ as a project, since it won’t be aesthetic to store

configuration data in ftml file, it would be better if we introduce a project as a collection of some

files.

● To start with, it will have a flightpath related file, and a configuration file, and a contributors file

showing waypoint details and collaborators who contributed to change of the waypoint.

● An illustration is shown below.

● To integrate this with mss, create_new_view function can be modified to open a flightpath in a

particular view mode. The attribute self.active_flight_track can be changed to

self.active_project . And each window opened would have a flightpath with some

configuration obtained from project_config.py, and contribution details of each waypoint from

project_config.py.

Projects can also be opened/created directly from main-window.

https://bitbucket.org/wxmetvis/mss/src/ec33f188fd521f52a6e647fe6cc481d12c5be989/mslib/msui/mss_pyui.py?at=develop&fileviewer=file-view-default#mss_pyui.py-427

The configuration for a new project can be input by the user in a graphical manner.

This creates a project on mscollab server with a single administrator.

Clicking on ‘Mscollab Login’ would show a dialogue-box with email-id and password, for login. If the User

with email-id doesn’t exist in the mscollab database, user registration dialogue-box is opened. Once login is

completed, login button gets replaced by the following display.

Opening a project which the user is administrator of would open the following window. Clicking on a

project which the user is the collaborator of, opens a similar window, without options to add/remove

collaborators.

● Left side of the window as seen by the user, has a list of users collaborating on the experiment.

● Right side of the window as seen by the user, has a log of recent history of changes.

● Central space lists the group chat messages which will support important markdown syntax (e.g

bold, italics) during editing.

Once a new file is created or a file is opened with mscollab, say ‘experiment.ftml’, msui window gets

updated with new file in the listing which can be edited in an usual manner and each change gets saved in

mscollab server after a certain duration. The continuous backup can be disabled/enabled by the user by

an UI element.

If one opens an old stored file, say ‘old-experiment.ftml’, following API calls are made with filename/file-id

as parameter.

● /get_file handled by FileManager

If file is not found in $data_dir, it’s created in $data_dir as an intermediate save point.

● /get_authorized_users handled by FileManager

● /get_log handled by FileManager

● /get_messages handled by ChatManager

Once this data is received, it is suitably rendered to a new mscollab-ui window as shown in the mock-up.

The overall data-flow diagram in front-end would resemble the following.

SocketManager class would be a simple class, with two major functions:

● connect()

Used to start connection after authentication is complete and the client receives a token

● on_message()

Used to handle messages incoming from mscollab server (when SocketManager.emit() is called).

Event handlers would be written in ‘msui/mscollab_ui.py’.

Timeline
I have tried to schedule the project work as per GSoC’s timeline.

Note:

● Every time span starting from 27th May till 12th August, if it doesn’t involve ‘buffer for

improvement’ or ‘bug-fixes’, would include unit tests.

● Holidays like weekends are included in the time blocks. (I plan to take 1 day off per week, if work is

up-to date as per schedule)

Time Span Work

6th May Accepted student proposals announced

7th May - 26th May Community Bonding Period

7th May - 8th May (2 days) Setup logistics

- Decide on schedule and mode of

communication for weekly and emergency
meetings.

- Setup other logistics i.e GSoC blog

9th May - 21st May (~2 weeks) Finalize proposed architecture with mentors

- Discuss with mentors about any changes or
improvement to be made in proposed
architecture and draft a final design
document.

- Discuss and confirm the selection of
software libraries and tools, replace them
with better ones if needed.

- Help solve some issues related to 1.9.0
release of mss.

- Dive a little deeper into mss’ way of
handling File IO in client’s side.

- Start working on ‘Project’ for core msui

21st May - 26th May (~1 week) Setup project environment

- Finish up on Project integration for msui.
- Make a list of software and tools

dependencies of the project.
- Install and verify their installation.

27th May Official coding starts

27th May - 5th June (~1.5 weeks) Starter template setup and development of User
related route.

- Setup mscollab server with Flask, and
python-socketio.

- Migrate database models and write classes
for the same as Schemas.

- Write API endpoints of /user route i.e login,
signup, authentication.

6th June - 12th June (~1 week) Development of Socket API

- SocketManager class is developed along
with all the member functions.

- Integrated with Main App.
- Test connect/disconnect/message

functionality with a dummy client setup
externally.

13th June - 16th June (~0.5 weeks) Development of Chat API

- ChatManager class is developed along with

event handler functions.
- Integrated with ‘message’ event in

SocketManager.message() function.
- Test functionality with dummy python

client.

17th June - 24th June (~1 week) Development of File API

- FileManager class is developed.
- Separate handler functions for different

storage options (e.g local and WebDAV) are
considered and implemented.

- Development of Permission class and
associated handlers.

- Test functionality with python client

24th June - 28th June First round of evaluations

24th June - 28th June (~0.5 weeks) Buffer time to cover back-logs, solve newly
discovered bugs, refactoring needs, and improve
tests.

29th June - 6th July (~1 week) Development of ‘Change’ related handlers.

- Development of FileManager class is
continued and the ‘diff’s are stored in
‘Change’ table.

- Design algorithm to handle a change, link it
to waypoint(s) and save this change-id to
XML tag <Waypoint/> for further insights.

- Test this with a dummy python client.

7th July - 14th July (~1 week) Development of auth/connection for front-end and
Projects’ Dashboard

- Setting up a login modal for users when
they open mscollab’s dashboard.
Development of socket utilities for
front-end

- Development of dashboard which shows
users’ projects which they collaborate on or
are admin of.

- Setting up click handlers which should open
a dummy window as of this duration.

15th July - 22nd July (~1 week) Development of Project Window upto some
features i.e users-list and messages

- Development of Project window where
users would discuss on a project.

- Identify admin/non-admin and setup
corresponding UI i.e (Add/delete
collaborators, etc.)

22nd July - 26th July Phase 2 evaluation

23rd July - 28th July (5 days) Continue development of Project Window

- Development of change-log column
- Thorough testing of the required

functionalities implemented.
- Listing down bugs

29th July - 3th August (~0.5 weeks) Buffer time to cover back-logs, solve newly
discovered bugs, refactoring needs, and improve
tests.

5th August - 12th August (~1 week) Load ‘change’ attributes from <Waypoint/> XML
and use these changes to show insights like

- Last edited time
- Last 5 contributors

in topview/sideview window.

13th August - 18th August(~1 week) - Implement integration testing, find and
solve more bugs if found.

- Improve on general algorithm
implementations to achieve a more
efficient solution, if needed.

- Document code and integrate
documentation to that of mss’.

19th August - 26th August Work Submission

19th August - 25th August(~1 week) - Ask mentors for a more detailed review,
and work on fixes covering
code/documentation/deployment options
etc.

- Project and documentation submission.

26th August - 2nd September Mentors submit final evaluation

3rd September Final results announced.

Future Work

Mscollab’s development doesn’t stop with GSoC’19. Once the initial base is established, I want to keep

working along further development and maintenance at my spare time. Some features which I hope to

work on after GSoC are as follows.

● Multiple workspaces in single window

The above layout shows a single collaboration task in one window. This can be extended to multiple

workspaces in a single window as ‘tabs’. This work would mostly involve working with the UI of

mscollab software.

● Waypoint as a model

If two other models are introduced as ‘Waypoint’ and ‘Path’, this design can be largely exploited to

save better insights about the changes made to Waypoints.

● Make mscollab generic

The server can be used for any other XML or structured data with some modification. This can help

open doors to make mscollab available for broader use-cases.

● Version Control

Version control of files can be introduced in the central storage, using GitPython or a similar library.

Some concepts like branches, cherry-pick/revert can be exploited to implement functionalities like

undo, or redo operations made by commit(s).

Other Commitments

- If I am selected as a GSoC student, it will be my full-time commitment. I don’t have any other jobs or

internships during GSoC.

I have some important classes and assessments to attend on the third week of August, so for this

duration, I’d be able to work a few hours less.

May 6 - August 12: 45-48 hours/week

August 13 - August 19: 36-38 hours/week

August 20 - August 26: 45-48 hours/week

Though I’d join my school after summer break on 29th June, it won’t affect the numbers of hours I

work on the project. I will inform my mentors about any changes in schedule in a timely manner.

- Other than PSF, I am not applying to any other organisation to participate in GSoC. I am submitting

only one proposal, for Mission Support System under PSF.

https://github.com/gitpython-developers/GitPython

