Improve performance through the use of Pythran

Self-Introduction

- Name: Xingyu Liu
- University: Harvard University, MA, USA
- Major: First Year Data Science Master Student
- GitHub: https://github.com/charlotte12l
- Previous Programming Experience:
 - Programming Language: Python,C/C++/C++11,Shell,MATLAB,Assembly
 - Selected Projects
 - **EM-pipeline-mito**: Mitochondria Segmentation via deep learning, paper accepted by MICCAI 2020 (top-tier medical imaging conference)
 - **Awesome-AD**: A package of automatic differentiation with both Forward Mode and Reserve Mode. Not open source yet.
 - **Radiomics System**: A radiomics-computing system which supports 3D medical image visualization, annotation, feature extraction and analysis.
Past Contribution to SciPy

- **BENCH**: add benchmark for Kendalltau
- **BUG**: fix cosine distance range to 0-2
- **BUG**: update `_kendall_p_exact` ValueError to f-string
- substitute `np.math.factorial` with `math.factorial`: `np.math` is an alias of the stdlib `math` module. Here I removed the `np`
- **Do not use numpy 1.20(conda-forge) if you are setting up a development environment on MacOSX**: I shared some bugs and solutions during building SciPy in this issue
- **Pythran vs Cython**: did a small experiment on `_kendall_dis()` in `scipy.stats._stats.pyx` to compare the performance of Pythran vs Cython

Project Summary

Currently, there are a lot of algorithms in scipy that use Cython to improve the performance of code that would be too slow as pure Python, e.g. algorithms in `scipy.interpolate`, `scipy.spatial`, `scipy.stats` and `scipy.optimize`. Also, there are some algorithms that use Pythran for performance improvement, like `scipy.optimize._group_columns`, `scipy.signal._spectral`.

Cython is a superset of the Python language which can be compiled to C-code. Ideally, if one eliminates most accesses to Python objects it can achieve almost the same speed as C. However, the more you optimize Cython the more it will look like C and less like Python [1]. Comparing with Cython, Pythran is an ahead of time compiler for numerical and scientific python that can take advantage of SIMD instructions to speed up your code[1]. Besides, Pythran is relatively easier to use - no need to rewrite the code, it takes a Python module annotated with a few interface descriptions and turns it into a native Python module with the same interface, but faster[2]. Therefore, I choose to use Pythran to improve the performance.

After some investigation, I found the following algorithms could be accelerated (not finalized yet, may add more during GSoC).
- Scipy.stats
 - multiscale_graphcorr
 - Ttest_ind
 - _kendall_p_exact
 - _count_paths_outside_method
 - _compute_prob_inside_method
 - _cdf_distance
 - _moment
- scipy.optimize
 - differential_evolution
 - _nonmonotone_line_search_cruz
 - _nonmonotone_line_search_cheng
- scipy.sparse.random
- scipy.ndimage.generic_filter

Also, I noticed that many algorithms currently do not have corresponding benchmarks, e.g., in scipy.stats, most of the Inferential Stats functions, many Correlation Functions, ANOVA Functions. I plan to write benchmarks for them, too.

Project Design

Part A: Writing Benchmark

Currently, SciPy uses Airspeed Velocity for performance benchmarking. All benchmarks are in benchmarks/. To write a benchmark, we need to specify the params_names and params, do setup and call the function in time_xxx(). Below is a benchmark I wrote and I will also follow this code style in the future.

```python
class Kendalltau(Benchmark):
    param_names = ['nan_policy', 'method', 'variant']
    params = [
        ['propagate', 'raise', 'omit'],
        ['auto', 'asymptotic', 'exact'],
        ['b', 'c']
    ]

def setup(self, nan_policy, method, variant):
    np.random.seed(12345678)
    a = np.arange(200)
    np.random.shuffle(a)
    b = np.arange(200)
    np.random.shuffle(b)
    self.a = a
    self.b = b
```
```python
def time_kendalltau(self, nan_policy, method, variant):
    tau, p_value = stats.kendalltau(self.a, self.b, nan_policy=nan_policy, method=method, variant=variant)
```

To run the benchmark, do `python runtests.py --bench stats.Kendalltau` and we can get the following output.

```
(scipydev) charlotte@CHARLOTLIU-MB0 scipy % python runtests.py --bench stats.Kendalltau
Building, see build.log...
Build OK (0:09:08.047040 elapsed)
Running benchmarks for Scipy version 1.7.0.dev0+f679c65 at /Users/charlotte/Desktop/internship/gsoc/scipy/build/... No `environment_type` specified in asv.conf.json. This will be required in the future.
- Discovering benchmarks
  - Running 1 total benchmarks (1 commits * 1 environments * 1 benchmarks)
  [  0.00%] · · Benchmarking existing-py/Users/charlotte/anaconda3/envs/scipydev_bin_python
  [ 50.00%] · · Running (stats.Kendalltau.time_kendalltau--). 
[100.00%] · · stats.Kendalltau.time_kendalltau          ok
[100.00%] · · ________________________________________________
  --                         variant
  ________________________________ __________________________
  nan_policy    method  b         c
  ________________________________ __________________________
  propagate     auto    209±10μs  250±8μs
  propagate     asymptotic 202±10μs  257±20μs
  propagate     exact     9.01±0.4μs 8.68±0.8μs
  raise         auto    199±3μs   236±2μs
  raise         asymptotic 198±2μs  238±6μs
  raise         exact     8.61±0.05μs 8.62±0.05μs
  omit          auto    199±7μs   238±6μs
  omit          asymptotic 199±3μs  231±4μs
  omit          exact     8.68±0.04μs 8.68±0.09μs
```

To visualize the all the benchmarks, do

```
asv run --skip-existing-commits --steps 10 ALL
asv publish
asv preview
```

Open http://127.0.0.1:8080/ on your local machine and then you can see the visualization results.

```
(scipydev) charlotte@CHARLOTLIU-MB0 benchmarks % asv preview
  · Serving at http://127.0.0.1:8080/
  · Press `^C` to abort
```
Part B: Improving Performance

Currently, there are many slow algorithms in SciPy that could be accelerated, but how can we identify the potential algorithms? Pytest and line_profiler are good profiling tools that would be useful here. After finding the slow algorithms, we can use Pythran to accelerate them. I will use `kendall_p_exact` as an example to illustrate the following steps:

1. Identify slow algorithms via pytest: we can find the N slowest test calls using pytest with `--duration=N` option
2. Analyze the function via line_profiler: `line_profiler` can help analyze the function line by line
3. Improve the Function via Pythran
4. Compare the performance via line_profiler

Step 1: Identify slow algorithms via pytest

Pytest is a mature Python testing tool with features like unittest and duration profiling. Using `--duration=N` option, we can find out N slowest test execution calls. For example, run `pytest --durations=10` inside scipy/stats/, we can get the slowest 10 durations, as is shown below.

```
slowest 10 durations
17.36s call    scipy/stats/tests/test_stats.py::TestMGCStat::test_twosamp
17.15s call    scipy/stats/tests/test_continuous_basic.py::test_cont_basic[500-200-kstwo-arg57]
16.68s call    scipy/stats/tests/test_distributions.py::TestLevyStable::test_pdf_nolan_samples
16.09s call    scipy/stats/tests/test_stats.py::Test_ttest_ind_permutations::test_ttest_ind_randperm_alternative2
9.36s call    scipy/stats/tests/test_cont_basic.py::test_kendall_p_exact_large
9.26s call    scipy/stats/tests/test_cont_basic.py::test_moments[kstwo-arg57-True-True-False]
9.26s call    scipy/stats/tests/test_cont_basic.py::test_moments[vonmises-arg100-False-False-False]
6.98s call    scipy/stats/tests/test_cont_basic.py::test_moments[vonmises_line-arg102-True-True-False]
6.66s call    scipy/stats/tests/test_cont_basic.py::test_moments[ksone-arg56-True-True-False]
5.66s call    scipy/stats/tests/test_cont_basic.py::test_cont_basic[500-200-wrapcauchy-arg104]
```

In `test_stats.py`, the slowest test is `TestMGCStat::test_twosamp` and `test_ttest_ind_randperm_alternative2`, I'm still working on it (see [WIP] `stats.multiscale_graphcorr` and [WIP] test_ttest_ind_randperm_alternative2 analysis).

Therefore, for better illustration, I will use the 5th one, `test_kendall_p_exact_large` as an example for the following steps.
Step 2: Analyze the function via line_profiler

Line_profiler is a useful tool that can profile the time individual lines of code take to execute. After decorating the functions you want to profile with @profile, do kernprof -v -l script_to_profile.py and then you can see the line-by-line time analysis of the function.

The following figure shows the profiling for test_kendall_p_exact_large. As we can see, mstats_basic._kendall_p_exact spent almost 100% of the time.

Let’s look at the profiling of mstats_basic._kendall_p_exact_large, the slowest part is the for-loop.
Step 3: Improve the Function via Pythran

The first idea came to me is accelerating it with Pythran. So I rewrite _kendall_p_exact as follows (I rewrite the f-string part and change \texttt{np.math.factorial} to \texttt{math.factorial} because Pythran does not support \texttt{np.math}).

Then do `pythran _my_kendall_p_exact.py` to generate the .so file.

```python
#scipy/stats/_my_kendall_p_exact.py
import numpy as np
import math

#pythran export _kendall_p_exact(int, int)
def _kendall_p_exact(n, c):
    # Exact p-value, see Maurice G. Kendall, "Rank Correlation Methods" (4th Edition),
    if n <= 0:
        raise ValueError('n ({n}) must be positive')
    elif c < 0 or 4*c > n*(n-1):
        raise ValueError('c ({c}) must satisfy 0 <= 4c <= n(n-1) = ' + str(n*(n-1)))
    elif n == 1:
        prob = 1.0
    elif n == 2:
        prob = 1.0
    elif c == 0:
        prob = 2.0/math.factorial(n) if n < 171 else 0.0
    elif c == 1:
        prob = 2.0/math.factorial(n-1) if n < 172 else 0.0
    elif 4*c == n*(n-1):
        prob = 1.0
    elif n < 171:
        new = np.zeros(c+1)
        new[0:2] = 1.0
        for j in range(3, n+1):
            new = np.cumsum(new)
            if j <= c:
                new[j:] -= new[:c+1-j]
        prob = 2.0*np.sum(new)/math.factorial(n)
    else:
        new = np.zeros(c+1)
        new[0:2] = 1.0
        for j in range(3, n+1):
            new = np.cumsum(new)/j
            if j <= c:
                new[j:] -= new[:c+1-j]
        prob = np.sum(new)

    return np.clip(prob, 0, 1)
```
Step 4: Compare the performance via line_profiler

We can still use line_profiler to see whether the performance improved. As is shown below, the time of `_kendall_p_exact` now is 16295747, unfortunately, it is larger than before - 11492472.

One reason is that I rewrote
`f'c ((c)) must satisfy 0 <= 4c <= n(n-1) = {n*(n-1)}.` to
`c ((c)) must satisfy 0 <= 4c <= n(n-1) = '+ str(n*(n-1))'` because Pythran requires f-strings with format specifier and I thought format specifier may be slower than using str() but it turns out not.

However, even if the original numpy version and the Pythran version use the same string, the Pythran version is still slower on my machine. I opened an issue in pythran, and the main author suggested that array copy (new[j:] -= new[:c+1-j]) optimization would be helpful but is not implemented in Pythran yet.

<table>
<thead>
<tr>
<th>Line #</th>
<th>Hits</th>
<th>Time</th>
<th>Per Hit</th>
<th>% Time</th>
<th>Line Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td>@profile</td>
<td></td>
<td></td>
<td>def test_kendall_p_exact():</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td># Test for the exact method with large samples (n >= 171)</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td># expected values generated using SymPy</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>6.0</td>
<td>3.0</td>
<td>0.0</td>
<td>expectations = {(400, 38965): 0.48444283672113310999,</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
<td>(401, 39516): 0.6666315983247437662,</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>(800, 156777): 0.422644484831209932655,</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
<td>(801, 157849): 0.53437553412194416236,</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>(1000, 63747): 0.8420017376000323538419,</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
<td>(1001, 638384): 0.3446525080890593946</td>
</tr>
<tr>
<td>16</td>
<td>7</td>
<td>13.0</td>
<td>1.9</td>
<td>0.0</td>
<td>for nc, expected in expectations.items():</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td># res = mstats_basic_kendall_p_exact(nc[0], nc[1])</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>16295747.0</td>
<td>2715957.8</td>
<td>100.0</td>
<td>assert_almost_equal(res, expected)</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>976.0</td>
<td>162.7</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

Project Schedule

Community Bonding Period

May 17 - May 23

- Introduce myself and get to know more about my mentors, the organization, and other resources to look for help
- Actively take part in discussions regarding my project.
May 24 - May 30

- Investigate, discuss and decide the algorithms needed to be improved with my mentors
- Investigate, discuss and decide the benchmarks needed to be wrote with my mentors

May 31 - June 6

- Read the Pythran tutorial thoroughly.
- Study profiling Cython code

Development Phase

June 7 - June 13

- Finish writing benchmarks for those scipy.stats functions (they don’t have benchmarks currently)
 - all the inferential stats functions
 - many correlation functions
 - all the ANOVA functions

June 14 - June 20

- Finish writing benchmarks for the selected slow algorithms if they don’t have benchmarks then.

June 21 - June 27

- Finish accelerating three algorithms:
 - scipy.statsmultiscale_graphcorr
 - scipy.stats.ttest_ind
 - scipy.stats._kendall_p_exact

June 28 - July 4

- Finish accelerating two algorithms:
 - scipy.stats._compute_prob_inside_method
 - scipy._count_paths_outside_method
July 5 - July 11
 ● Prepare for the first evaluations and initial demo.

July 12 - July 18
 ● Finish accelerating two algorithms:
 ○ scipy.stats._cdf_distance
 ○ scipy.stats._moment

July 19 - July 25
 ● Finish accelerating three algorithms:
 ○ scipy.optimize.differential_evolution
 ○ scipy.optimize._nonmonotone_line_search_cruz
 ○ scipy.optimize._nonmonotone_line_search_cheng

July 26 - August 1
 ● Finish accelerating two algorithms:
 ○ scipy.sparse.random
 ○ scipy.ndimage.generic_filter

Project Completion, testing, and documentation

August 2 - August 8
 ● Testing and debugging.
 ● Write documentation about writing and running benchmarks.

August 9 - August 15
 ● Prepare a demo and write a blog about this project

August 16 - August 23
 ● Discuss future prospects and developments with the mentors
 ● Help implement z-test (see the issue) if time permits
Acknowledgement

Many thanks to Ralf for helping me iterating this proposal and providing so many suggestions these days!!!