
Improve performance through the use of 
Pythran 

Self-Introduction 
● Name: Xingyu Liu 

● University: Harvard University, MA, USA 

● Major: First Year Data Science Master Student 

● GitHub: https://github.com/charlotte12l 

● Previous Programming Experience:  

○ Programming Language:  Python,C/C++/C++11,Shell,MATLAB,Assembly  

○ Selected Projects 

■ EM-pipeline-mito: Mitochondria Segmentation via deep learning, 
paper accepted by MICCAI 2020 (top-tier medical imaging 
conference)  

■ Awesome-AD: A package of automatic differentiation with both 
Forward Mode and Reserve Mode. Not open source yet. 

■ Radiomics_System: A radiomics-computing system which supports 
3D medical image visualization, annotation, feature extraction and 
analysis. 

 
 
 
 



  

Past Contribution to SciPy 
● BENCH: add benchmark for Kendalltau 
● BUG: fix cosine distance range to 0-2 
● BUG: update _kendall_p_exact ValueError to f-string 
● substitute np.math.factorial with math.factorial：np.math is 

an alias of the stdlib math module. Here I removed the np. 
● Do not use numpy 1.20(conda-forge) if you are setting up a 

development environment on MacOSX : I shared some 
bugs and solutions during building SciPy in this issue 

●  Pythran_vs_cython: did a small experiment on 
_kendall_dis() in scipy.stats._stats.pyx to compare the 
performance of Pythran vs Cython 

 

Project Summary 
Currently, there are a lot of algorithms in scipy that use Cython to improve the 
performance of code that would be too slow as pure Python, e.g. algorithms in 
scipy.interpolate, scipy.spatial, scipy.stats and scipy.optimize. Also, there are some 
algorithms that use Pythran for performance improvement, like 
scipy.optimize._group_columns, scipy.signal._spectral.  

Cython is a superset of the Python language which can be compiled to C-code. Ideally, 
if one eliminates most accesses to Python objects it can achieve almost the same 
speed as C. However, the more you optimize Cython the more it will look like C and less 
like Python [1] .Comparing with Cython, Pythran is an ahead of time compiler for 
numerical and scientific python that can take advantage of SIMD instructions to speed 
up your code[1]. Besides, Pythran is relatively easier to use - no need to rewrite the 
code, it takes a Python module annotated with a few interface descriptions and turns it 
into a native Python module with the same interface, but faster[2]. Therefore, I choose 
to use Pythran to improve the performance. 

After some investigation, I found the following algorithms could be accelerated (not 
finalized yet, may add more during GSoC).  



- Scipy.stats 
- multiscale_graphcorr 
- Ttest_ind 
- _kendall_p_exact 
- _count_paths_outside_method 
- _compute_prob_inside_method 
- _cdf_distance 
- _moment 

- scipy.optimize 
- differential_evolution 
- _nonmonotone_line_search_cruz 
- _nonmonotone_line_search_cheng 

- scipy.sparse.random 

- scipy.ndimage.generic_filter 

Also, I noticed that many algorithms currently do not have corresponding benchmarks, 
e.g., in scipy.stats, most of the Inferential Stats functions, many Correlation Functions, 
ANOVA Functions. I plan to write benchmarks for them, too. 

 

Project Design 

Part A: Writing Benchmark 
Currently, SciPy uses Airspeed Velocity for performance benchmarking. 
All benchmarks are in benchmarks/. To write a benchmark, we need to specify the 
params_names and params, do setup and call the function in time_xxx(). Below is a 
benchmark I wrote and I will also follow this code style in the future. 
class Kendalltau(Benchmark): 
   param_names = ['nan_policy','method','variant'] 
   params = [ 
       ['propagate', 'raise', 'omit'], 
       ['auto', 'asymptotic', 'exact'], 
       ['b', 'c'] 
   ] 
 
   def setup(self, nan_policy, method, variant): 
       np.random.seed(12345678) 
       a = np.arange(200) 
       np.random.shuffle(a) 
       b = np.arange(200) 
       np.random.shuffle(b) 
       self.a = a 
       self.b = b 



 
   def time_kendalltau(self, nan_policy, method, variant): 
       tau, p_value = stats.kendalltau(self.a, self.b, nan_policy=nan_policy, method=method, 
variant=variant) 

 
 
To run the benchmark, do python runtests.py --bench stats.Kendalltau and we 
can get the following output. 
 

 
To visualize the all the benchmarks, do  
 
   asv run --skip-existing-commits --steps 10 ALL 
   asv publish 
   asv preview 

 
Open http://127.0.0.1:8080/ on your local machine and then you can see the visualization 
results. 

 



 

Part B: Improving Performance 
Currently, there are many slow algorithms in SciPy that could be accelerated, but how can we 
identify the potential algorithms ? Pytest and line_profiler are good profiling tools that would be 
useful here. After finding the slow algorithms, we can use Pythran to accelerate them. I will use 
kendall_p_exact as an example to illustrate the following steps: 

1. Identify slow algorithms via pytest: we can find the N slowest test calls using pytest with 
“–duration=N” option  

2. Analyze the function via line_profiler: line_profiler can help analyze the function line by 
line 

3. Improve the Function via Pythran 
4. Compare the performance via line_profiler 

Step 1: Identify slow algorithms via pytest 
Pytest is a mature Python testing tool with features like unittest and duration profiling. Using “–
duration=N” option, we can find out N slowest test execution calls. For example, run `pytest --
durations=10` inside scipy/stats/, we can get the slowest 10 durations, as is shown below. 
 
============================= slowest 10 durations ============================= 
17.36s call     scipy/stats/tests/test_stats.py::TestMGCStat::test_twosamp 
17.15s call     scipy/stats/tests/test_continuous_basic.py::test_cont_basic[500-200-kstwo-arg57] 
16.68s call     scipy/stats/tests/test_distributions.py::TestLevyStable::test_pdf_nolan_samples 
16.09s call     
scipy/stats/tests/test_stats.py::Test_ttest_ind_permutations::test_ttest_ind_randperm_alternative2 
9.56s call     scipy/stats/tests/test_mstats_basic.py::TestCorr::test_kendall_p_exact_large 
9.36s call     scipy/stats/tests/test_continuous_basic.py::test_moments[kstwo-arg57-True-True-False] 
9.26s call     scipy/stats/tests/test_continuous_basic.py::test_moments[vonmises-arg100-False-False-
False] 
6.98s call     scipy/stats/tests/test_continuous_basic.py::test_moments[vonmises_line-arg102-True-True-
False] 
6.66s call     scipy/stats/tests/test_continuous_basic.py::test_moments[ksone-arg56-True-True-False] 
5.66s call     scipy/stats/tests/test_continuous_basic.py::test_cont_basic[500-200-wrapcauchy-arg104] 
 
In  test_stats.py, the slowest test is  TestMGCStat::test_twosamp and 
test_ttest_ind_randperm_alternative2, I’m still working on it (see [WIP]  
stats.multiscale_graphcorr and [WIP] test_ttest_ind_randperm_alternative2 analysis).  
 
Therefore, for better illustration, I will use the 5th one, test_kendall_p_exact_large as 
an example for the following steps. 
 



Step 2: Analyze the function via line_profiler 
Line_profiler is a useful tool that can profile the time individual lines of code take to execute. 
After decorating the functions you want to profile with @profile, do kernprof -v -l 
script_to_profile.py and then you can see the line-by -line time analysis of the function.  
 
The following figure shows the profiling for test_kendall_p_exact_large. As we can see, 
mstats_basic._kendall_p_exact spent almost 100% of the time.  
 

 
 

Let’s look at the profiling of stats_basic._kendall_p_exact_large，the slowest part is 

the for-loop. 
 

 



Step 3: Improve the Function via Pythran 
The first idea came to me is accelerating it with Pythran. So I rewrite  _kendall_p_exact as 
follows (I rewrite the f-string part and change np.math.factorial to math.factorial because 
Pythran does not support np.math).  
 
Then do `pythran _my_kendall_p_exact.py` to generate the .so file. 
#scipy/stats/_my_kendall_p_exact.py 
import numpy as np 
import math 
 
#pythran export _kendall_p_exact(int,int) 
def _kendall_p_exact(n, c): 
   # Exact p-value, see Maurice G. Kendall, "Rank Correlation Methods" (4th Edition), 
Charles Griffin & Co., 1970. 
   if n <= 0: 
       raise ValueError('n ({n}) must be positive') 
   elif c < 0 or 4*c > n*(n-1): 
       raise ValueError('c ({c}) must satisfy 0 <= 4c <= n(n-1) = '+ str(n*(n-1))) 
   elif n == 1: 
       prob = 1.0 
   elif n == 2: 
       prob = 1.0 
   elif c == 0: 
       prob = 2.0/math.factorial(n) if n < 171 else 0.0 
   elif c == 1: 
       prob = 2.0/math.factorial(n-1) if n < 172 else 0.0 
   elif 4*c == n*(n-1): 
       prob = 1.0 
   elif n < 171: 
       new = np.zeros(c+1) 
       new[0:2] = 1.0 
       for j in range(3,n+1): 
           new = np.cumsum(new) 
           if j <= c: 
               new[j:] -= new[:c+1-j] 
       prob = 2.0*np.sum(new)/math.factorial(n) 
   else: 
       new = np.zeros(c+1) 
       new[0:2] = 1.0 
       for j in range(3, n+1): 
           new = np.cumsum(new)/j 
           if j <= c: 
               new[j:] -= new[:c+1-j] 
       prob = np.sum(new) 
 
   return np.clip(prob, 0, 1) 



Step 4: Compare the performance via line_profiler 
We can still use line_profiler to see whether the performance improved. As is shown below, the 
time of  _kendall_p_exact now is 16295747, unfortunately, it is larger than before - 
11492472.  
 
One reason is that I rewrote `f'c ({c}) must satisfy 0 <= 4c <= n(n-1) = {n*(n-
1)}.'` to `'c ({c}) must satisfy 0 <= 4c <= n(n-1) = '+ str(n*(n-1))` because 
Pythran requires f-strings with format specifier and I thought format specifier may be slower than 
using str() but it turns out not.   
However, even if the original numpy version and the Pythran version use the same string, the 
Pythran version is still slower on my machine. I opened an issue in pythran, and the main author 
suggested that array copy (new[j:] -= new[:c+1-j]) optimization would be helpful but is not 
implemented in Pythran yet. 
 

 
 
 
 
 

Project Schedule 

Community Bonding Period 

May 17 - May 23 

● Introduce myself and get to know more about my mentors, the organization, and other 
resources to look for help 

● Actively take part in discussions regarding my project. 
          



May 24 - May 30 

● Investigate, discuss and decide the algorithms needed to be improved with my mentors 
● Investigate, discuss and decide the benchmarks needed to be wrote with my mentors 

 

May 31 - June 6            

● Read the Pythran tutorial thoroughly. 
https://pythran.readthedocs.io/en/latest/MANUAL.html  

● Study profiling Cython code 
https://cython.readthedocs.io/en/latest/src/tutorial/profiling_tutorial.html  

 

Development Phase 

June 7 - June 13          

● Finish writing benchmarks for those scipy.stats functions (they don’t have benchmarks 
currently) 

○ all the inferential stats functions 
○ many correlation functions 
○ all the ANOVA functions 

June 14 - June 20 
● Finish writing benchmarks for the selected slow algorithms if they don’t have 

benchmarks then. 

June 21 - June 27 
● Finish accelerating three algorithms: 

○ scipy.statsmultiscale_graphcorr 
○ scipy.stats.ttest_ind 
○ scipy.stats._kendall_p_exact 

June 28 - July 4 
● Finish accelerating two algorithms: 

○ scipy.stats._compute_prob_inside_method 
○ scipy._count_paths_outside_method 



July 5 - July 11 

● Prepare for the first evaluations and initial demo. 

July 12 - July 18 

● Finish accelerating two algorithms: 
○ scipy.stats._cdf_distance 
○ scipy.stats._moment 

July 19 - July 25 

● Finish accelerating three algorithms: 
○ scipy.optimize.differential_evolution 
○ scipy.optimize._nonmonotone_line_search_cruz 
○ scipy.optimize._nonmonotone_line_search_cheng  

July 26 - August 1 

● Finish accelerating two algorithms: 
○ scipy.sparse.random 

○ scipy.ndimage.generic_filter 

 
Project Completion, testing, and documentation   

August 2 - August 8 
● Testing and debugging.      
● Write documentation about writing and running benchmarks.  

August 9 - August 15 
● Prepare a demo and write a blog about this project 

August 16 - August 23 
● Discuss future prospects and developments with the mentors 
● Help implement z-test (see the issue) if time permits 
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